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A. Experimental Settings and Details
In this section, we present the experimental settings and details for reproducing the results. The main principle of our

experimental setting is to fairly compare multiplex training and standard training for NeRF and the variants. Our experimental
settings follows original papers to produce the baselines, unless we specify otherwise.

S3IM Setting. We always choose the kernel size K = 4, the stride size S = 4, and the number of stochastic patches
M = 10 without fine-tuning. We fine-tune the S3IM loss weight λ from {0.05, 0.1, 0.2, 0.5, 1, 2, 5} for the NeRF family and
{1, 2, 5, 10, 20, 50, 100} for the NeuS family.

A.1. Models and Optimization

DVGO Setting We employ the sourcecode of DVGO (Version 2) in the original project [12] without modifying training
hyperparameters. So we train DVGO via Adam [7] with the batch size B = 8192. The learning rate of density voxel grids and
color/feature voxel grids is 0.1, and the learning rate of the RGB net (MLP) is 0.001. The total number of iterations is 5000.
We multiply the learning rate by 0.1 per 1000 iterations.

TensoRF Setting We employ the sourcecode of the original project [1] without modifying training hyperparameters. The
total number of iterations is 30000. The batch size is 4096. The initial number of voxels is 1283, while the final number of
voxels is 3003. The upsamping iterations for voxels are 2000,3000,4000,5500 and 7000, respectively. Adam with β1 = 0.9
and β2 = 0.99 is used.

NeRF Setting We employ a popular open-source implementation [16] of the original NeRF. Again, we follow its defaulted
training setting. The learning rate is 0.0005, and the learning rate scheduler is 0.1iters/500000.

D-NeRF Setting We directly employ the sourcecode of D-NeRF in the original project [9]. We only slightly change the
original batch size B = 500 to B = 512 for generating the squared stochastic patch. The learning rate is 0.0005. The total
number of iterations is 800k. The learning rate decay follows the original paper.

NeuS Setting We employ the NeuS implementation of SDFStudio [17] and follow its default hyperparameters. The
difference of the hyperparameters between SDFStudio and the original paper [13] is that SDFStudio trains 100k iterations,
while the original paper trains 300k iterations.

A.2. Datasets

Replica Dataset Replica Dataset has no splitted training dataset and test dataset. In the experiments on Replica, if one
image index is divisible by 10, we move the image to the test dataset; if not, we move the image to the training dataset. Thus,
we have 90% images for training and 10% images for evaluation.

T&T Dataset Advanced T&T Dataset Advanced has no splitted training data and test data. We follow the original splitted
way in the standard setting. In the experiments on Replica, if one image index is divisible by 10, we move the image to the test
T&T Dataset Advanced; if not, we move the image to the training dataset. Similarly, we again have 90% images for training
and 10% images for evaluation.



T&T Dataset Intermediate T&T Dataset has splitted training data and test data. We follow the original splitted way in
the standard setting. In the experiments of sparse inputs, we randomly remove the training images. In the experiments of
corrupted images, we inject Gaussian noise with the scale std into RGB values of the training images, and clip the corrupted
RGB values into [0, 1].

Dynamic Scenes: LEGO and Mutant The two dynamics scenes are used in the original D-NeRF paper. We use them in
the same way without any modification.

B. Image Quality Metrics
As we mentioned above, PSNR and SSIM are two most popular image quality metrics. Beyond them, we have also seen

other useful metrics. Multiscale SSIM [15] is a variant of SSIM, which incorporates image details at different resolutions.
However, Multiscale SSIM still can only capture local structural information carried by nearby pixels.

Deep features learned by DNNs has unreasonable effectiveness as a perceptual metric for measuring the similarity between
two sets of perceptual features [18]. Thus, the Learned Perceptual Image Patch Similarity (LPIPS) metric [18] serves as the
third rendering quality metric in NeRF and related studies, because it agrees surprisingly well with humans. The Fréchet
inception distance (FID) score [4] is another metric which measure the distance-based similarity of perceptive features, but it
is more widely used for evaluating generative models, such as Generative Adversarial Networks [2, 3] (GAN) and Diffusion
Models [10, 11, 5]. Both LPIPS and FID metrics inevitably have certain stochasticity, because deep features are learned from
stochastic training of DNNs. However, the stochasticity does not affect the usefulness and popularity of LPIPS and FID as
image quality metrics.

S3IM can also be considered as a image quality metric, while we only use S3IM as a differentiable training objective in this
paper. More specifically, S3IM measures the structural similarity of two paired sets of pixels(/signals), which may or may not
form images. By analyzing the stochastic patch consists of random pixels, S3IM can capture non-local structural information
carried by nearby/distant pixels. S3IM also inevitably have certain stochasticity like LPIPS and FID, while S3IM does not
depend on deep features given by DNNs.

SSIM is a well-known quality metric that can capture local structural similarity between images or patches. SSIM is
considered to be correlated with the quality perception of the human visual system well and is widely used for evaluating NeRF
[14, 6]. Suppose a = {ai|i = 1, 2, 3, . . . , n} and b = {bi|i = 1, 2, 3, . . . , n} to be two discrete non-negative signals paired
with each other (e.g. two image patches extracted from the same spatial location from paired images). We denote the mean
intensity of a signal as µ (e.g. µa = 1

n

∑n
i=1 ai), the standard deviation of a signal as σ2 (e.g. σ2

a = 1
n−1

∑n
i=1(ai − µa)

2 ),
and the covariance between two signals as σ2

ab (e.g. σ2
ab =

1
n−1

∑n
i=1(ai − µa)(bi − µb)).

SSIM is expressed by the combination of three terms which are the luminance, contrast, and structure comparison metrics:

SSIM(a, b) = l(a, b)c(a, b)s(a, b). (1)

The luminance l(a, b), contrast c(a, b), and structure comparison s(a, b) are, respectively, written as

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1
, (2)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
, (3)

s(a, b) =
σab + C3

σaσb + C3
, (4)

where C1, C2, and C3 are small constants given by

C1 = (K1L)
2, C2 = (K2L)

2, and C3 = C2/2. (5)

Following the common setting [14, 8], we set K1 = 0.01 and K2 = 0.03 in this paper. The data range L is 1 for pixel RGB
values. The range of SSIM lies in [−1, 1].

In practice of image quality assessment, people usually apply the SSIM index locally rather than globally. The local
statistics µa, σa, and σab are computed within a local K × K kernel window, which moves with a stride size s over the
entire image. For example, for evaluating NeRF, people often use the kernel size 11× 11, the stride size 1, and the circular



symmetric Gaussian weighting function w = {wi|i = 1, 2, . . . , n}, with standard deviation of 1.5 samples, normalized to unit
sum (

∑
i wi = 1). The local statistics are then written as
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wiai, (6)
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2

, (7)
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) 1
2

. (8)

At each step, the local statistics and SSIM index are calculated within the local window. The final SSIM metric for
evaluating NeRF is actually the mean SSIM (MSSIM) which is computed by averaging the SSIM indexes over each step.

C. Supplementary Experimental Results

Table 1. Quantitative results of neural rendering of scenes in T&T Intermediate. Model: DVGO.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

M60
Standard 17.49 0.647 0.501
Multiplex 17.71 0.652 0.483

Playground
Standard 22.74 0.669 0.467
Multiplex 22.75 0.681 0.444

Train
Standard 17.19 0.566 0.533
Multiplex 18.24 0.581 0.491

Truck
Standard 22.01 0.704 0.386
Multiplex 22.44 0.730 0.338

In this section, we present supplementary experimental results.
We first present the quantitative results of DVGO on 4 scenes of T&T Intermediate in Table 1.
We present the quantitative results of DVGO, NeRF, and TensoRF on each T&T scenes in Tables 2, 3, and 4, respectively.

Table 2. Quantitative results of NeRF methods on T&T. Model: DVGO.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 21.80 0.759 0.243
Multiplex 22.16 0.783 0.191

Scene 2
Standard 23.96 0.847 0.250
Multiplex 25.37 0.872 0.171

Scene 3
Standard 18.64 0.697 0.272
Multiplex 19.71 0.757 0.192

Scene 4
Standard 25.27 0.800 0.179
Multiplex 25.55 0.823 0.151

Mean
Standard 22.42 0.776 0.236
Multiplex 23.20 0.809 0.176

Few-shot learning We evaluate multiplex training on a few-shot learning task, where we only keep eight training images.
The few-shot learning quantitative results in Table 5 support the significant advantage of multiplex training via S3IM.

Sparse inputs We present the quantitative results of neural rendering from sparse training images in Table 6.
Robustness to corrupted images We present the quantitative results of neural rendering from Corrupted Truck in Table 7.



Table 3. Quantitative results of NeRF methods on T&T. Model: NeRF.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 20.11 0.647 0.351
Multiplex 22.34 0.714 0.302

Scene 2
Standard 23.09 0.774 0.349
Multiplex 25.20 0.848 0.247

Scene 3
Standard 17.22 0.523 0.486
Multiplex 18.13 0.571 0.467

Scene 4
Standard 23.65 0.692 0.269
Multiplex 24.88 0.767 0.198

Mean
Standard 21.02 0.659 0.364
Multiplex 22.64 0.725 0.304

Table 4. Quantitative results of NeRF methods on T&T. Model: TensoRF.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Scene 1
Standard 17.33 0.643 0.413
Multiplex 22.67 0.779 0.216

Scene 2
Standard 24.44 0.847 0.240
Multiplex 25.14 0.859 0.214

Scene 3
Standard 12.15 0.342 0.761
Multiplex 18.64 0.699 0.286

Scene 4
Standard 24.84 0.766 0.207
Multiplex 24.93 0.770 0.205

Mean
Standard 19.69 0.650 0.365
Multiplex 22.85 0.777 0.230

Table 5. Quantitative results of few-shot learning. We only keep eight training images from the Truck Scene, T&T Intermediate. Model:
DVGO.

Scene Training PSNR(↑) SSIM(↑) LPIPS(↓)

Truck
Standard 11.37 0.343 0.704
Multiplex 13.43 0.372 0.610
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