
Supplementary Materials for
SparseFusion: Fusing Multi-Modal Sparse Representations

for Multi-Sensor 3D Object Detection

Yichen Xie1,∗, Chenfeng Xu1,∗, Marie-Julie Rakotosaona2, Patrick Rim3, Federico Tombari2,
Kurt Keutzer1, Masayoshi Tomizuka1, Wei Zhan1

1 University of California, Berkeley 2 Google 3 California Institute of Technology

In Sec. A, we provide additional experimental results
of SparseFusion and complementary details of the experi-
ments presented in the main paper. Then, in Sec. B, we
elaborate on the details of the architecture of SparseFusion.

A. Additional Experiments

A.1. Category-wise Results

In Tab. 1, we report the performance of SparseFusion
and our LiDAR-only baseline [1] for each object category in
nuScenes validation set. SparseFusion achieves significant
performance improvement for all of the object categories.
In particular, the introduction of camera inputs helps to dis-
tinguish objects with similar shapes like motorcycles and
bicycles.

A.2. Qualitative Results

We provide additional qualitative results in Fig. 1, where
SparseFusion effectively detects most objects in the scene
with the correct classification.

A.3. Experiment Details

Cross-Modality Sparse Representation Interaction We
provide more details about Fig. 6 in the main paper. The
orange boxes refer to the high-confidence objects detected
by the fusion branch. The blue and green dots denote all
instances from the LiDAR and camera branches separately
even if they only have very low confidence. The blue/green
lines separately connect the orange boxes and blue/green
dots. We only visualize the distribution of attention for
high-confidence objects detected in the fusion branches (or-
ange). The magnitude of relationships (i.e., the attention
value) is represented by the darkness and thickness of the
lines. More examples are visualized in Fig. 2.

Optimal Transport for Sparse Fusion (main paper
Tab. 3a) We explain some details of the optimal transport

strategy for sparse fusion in our ablation study. We model
the distribution of LiDAR candidates as follows.

pL(qL,i) =
sL,i∑NL

i=1 sL,i

, i = 1, 2, . . . , NL (1)

where sL,i is the classification confidence (highest cate-
gory) of the i-th instance for the LiDAR detector. Similarly,
the distribution of camera candidates is modeled as follows.

pC(qC,j) =
sC,j∑NC

i=1 sC,j

, i = 1, 2, . . . , NC (2)

where sC,j is the classification confidence (highest cate-
gory) of the j-th instance for the camera detector (after view
transformation). We construct a cost matrix C = [cij ], i =
1, 2, . . . , NL, j = 1, 2, . . . , NC , where cij is the euclidean
distance between the centers of the i-th LiDAR instance and
j-th camera instance on the BEV plane. We solve an op-
timal transport between pL(qL,i) and pC(qC,i) using the
IPOT algorithm [7] which outputs an optimal transport plan
T∗, where

T∗ = arg min
T∈R

NL×NC
+

< C,T > (3)

s.t. T1NC
= pL,T

T1NL
= pC (4)

We normalize T for each row as T̂ij = Tij/
∑NC

j=1 Tij .
Then, we concatenate LiDAR candidates QL with the
weighted camera candidates T̂QC (matrix product) in a
channel-wise manner. The output features are fed into a
feed-forward network to get the NL fused instance features,
then the prediction head can get the object categories and
bounding boxes based on the instance features.

B. Architecture Details
In this section, we explain the detailed structure of each

module in SparseFusion. In addition, we also illustrate the
query initialization process for both LiDAR and camera de-
tectors.

1



Front Left Front Front Right

Back Left Back Back Right

Car Truck Bicycle PedestrianBus

Front Left Front Front Right

Back Left Back Back Right

Car Truck Bicycle PedestrianBus

Figure 1: Qualitative results of SparseFusion on nuScenes validation set.

Table 1: Category-wise performance on nuScenes validation set including the overall NDS, mAP, and AP for each category.

Methods Modality NDS mAP car truck bus trailer
const.

vehicle pedestrian motorcycle bicycle
traffic
cone barrier

TransFusion-L [1] L 70.2 65.1 86.5 59.6 74.4 42.2 25.4 86.6 72.1 56.0 74.1 74.1
SparseFusion L+C 72.8 70.4 88.5 64.4 77.1 44.3 30.3 89.8 81.5 71.0 80.6 76.6

B.1. Network Architecture

LiDAR Detector We follow TransFusion-L [1] to adopt
a transformer-based LiDAR detector. The initial LiDAR
queries Q0

L (Sec. B.3) are passed through a self-attention
module, then cross-attention is conducted with the BEV
features from the LiDAR backbone. The output queries
are fed into a feed-forward network to get the LiDAR can-
didates QL. In both the self-attention and cross-attention
modules, we add a positional encoding to all of the queries,
keys, and values. Instead of the fixed sine positional em-
bedding [6], we apply the learned embeddings by inputting
the 2D XY locations of the queries, keys, and values on the
BEV plane to an MLP encoder. A LiDAR view prediction
head (Sec. B.2) is attached to the LiDAR candidates QL to
get the object category as well as the 3D bounding box in
LiDAR coordinates.

Camera Detector We extend Deformable-DETR [10] to
the 3D object detection task. The initial camera queries
Q0

C (Sec. B.3) go through a self-attention module, then

deformable attention is conducted with the image fea-
tures, where we aggregate multi-scale image features from
FPN [4] through deformable attention. In deformable at-
tention, each query only interacts with its corresponding
single-view image features. The output queries are fed into
a feed-forward network to get the perspective view cam-
era candidates QP

C . As we do with the LiDAR detector,
we add positional embeddings to all of the queries, keys,
and values, which indicate their 2D locations on the image
of the corresponding view. A perspective view prediction
head (Sec. B.2) is attached to the perspective view camera
candidates QP

C to get the object category as well as the 3D
bounding box in camera coordinates.

View Transformation Our view transformation module
consists of two parts: feature projection and multi-view ag-
gregation. The feature projection is already described in
Eq. 1 of the main paper, which encodes the camera parame-
ters and projected boxes with two MLPs and combines them
with the original instance features. The multi-view aggrega-



Figure 2: Instance-level feature interaction in the fusion
stage. Orange boxes are objects detected after the fusion
stage with high confidence in the BEV space. Blue and
green dots denote all instances from the LiDAR and cam-
era branches separately. Orange boxes are connected with
blue/green dots with blue/green lines. The strength of at-
tention is represented by the darkness and thickness of the
lines.

tion is based on a self-attention module. The output instance
features belonging to all the different views are put together
as QL

C = {qL
C,i}

NC
i=1. They are fed into a self-attention

module and feed-forward layer. For positional embeddings
added to each instance feature, we take into account both
the predicted box center on the image from the camera de-
tector and the box center on the BEV plane after bounding
box coordinate transformation. The 4-dimensional inputs
are passed through an MLP to get the positional embedding
for each instance feature. The updated queries serve as the
camera candidates QC = {qC,i}NC

i=1. We also attach a Li-
DAR view prediction head to the candidates to predict the
object category and 3D bounding boxes in the LiDAR coor-
dinates.

Fusion Branch We process the LiDAR candidates QL =
{qL,i}NL

i=1 and camera candidates QC = {qC,i}NC
i=1 with

two separate modules fL(·), fC(·), each consisting of a
fully-connected layer and layer normalization. Then, we
concatenate the candidates as QLC = {qLC,i}NL+NC

i=1 . Af-
terward, QLC is fed into a self-attention module and a feed-
forward network to get the final fused instance features QF .
In the self-attention module, we also add a learned posi-

tional embedding to the instance features by encoding the
XY box centers on the BEV with an MLP. Finally, we at-
tach a LiDAR view prediction head to QF to predict the
object category and 3D LiDAR view bounding boxes as the
final results.

Algorithm 1: Geometric Transfer
Input: Multi-scale image feature map of view v:

FC,v = [Fl
C,v]

L
l=0, sparse depth map of view

v: Dv .
Output: Multi-scale depth-aware image feature

map of view v: F̂C,v = [F̂l
C,v]

L
l=0

1 FD = Stem(Dv)

2 F̂C,v = []
3 for l = 1, 2, . . . , L do
4 FD = Residual-Blockl(FD)

5 FD = Concatenate(FD,Fl
C,v)

/* channel-wise concatenation */

6 FD = Convl3×3(FD)

7 Append FD to F̂C,v as F̂l
C,v.

8 Return F̂C,v

Geometric Transfer We project the LiDAR point clouds
to multi-view images with camera parameters to get the
sparse depth maps (200× 112 for nuScenes) for each view.
We combine the original multi-level image features from
FPN [4] with the sparse depth map to obtain the multi-level
depth-aware image features as shown in Alg. 1, where: L is
the scale level number (L = 4 in our experiments); Stem(·)
is a stem block composed of a 3 × 3 convolution, batch
normalization, and a ReLU activation; Residual-Block(·) is
the basic residual block in ResNet-18 [2] with stride 2 for
downsampling. Since we have multi-view images describ-
ing the surrounding scene, we run Alg. 1 separately for each
view with the shared network parameters.

Semantic Transfer Given the dense BEV features FL ∈
RH×W×C , only a few positions are indeed covered by
the LiDAR point clouds. For a position (xj , yj), xj ∈
{1, 2, . . . ,W}, yj ∈ {1, 2, . . . ,H} on the BEV feature map
occupied by point clouds, we denote the median height of
the points in this pillar (xj , yj) as zj . We project all these
{(xj , yj , zj)} from LiDAR coordinates to the multi-view
images. We fetch these image features at these positions
(max-pooling to aggregate multi-scale image features), and
we combine them with the original corresponding BEV fea-
tures through element-wise addition. The added features
serve as the queries to interact with the multi-scale image
features through a deformable-attention module and a feed-
forward network. We add the positional embeddings, which



are the 2D locations on the images, to the queries, keys, and
values. This process is run separately for images of each
view. If (xj , yj , zj) can be projected to multiple views, we
perform max-pooling to aggregate the updated queries from
multiple views. Each updated query replaces the original
BEV features FL at (xj , yj) to obtain the semantic-aware
BEV features F̂L, which will be used for the query initial-
ization of the LiDAR detector (Sec. B.3).

B.2. Prediction Head

We use two different prediction heads for 3D objects in
the perspective view and the LiDAR view.

Perspective View Head The perspective view prediction
head is designed for the camera detector to detect objects in
the camera coordinates. The head includes six independent
MLPs as follows:

1. It predicts the category of each object. The output di-
mension is the number of object categories, denoting
the confidence of each category.

2. For the image of each view, it regresses the offset of
the projected center of each object in the image from
the reference points indicated by the positional embed-
ding. The output dimension is two, denoting the XY
coordinate separately.

3. For the image of each view, it estimates the depths of
each object. The output dimension is one.

4. It regresses the logarithms of the XYZ scale of the 3D
bounding box. The output dimension is three.

5. It predicts the angle of each object around the vertical
axis (Y-axis in the camera coordinate). The output di-
mension is two, denoting the sin and cos of this angle.

6. It predicts the velocity in the horizontal plane (XZ-
plane in the camera coordinate space). The output
dimension is two,denoting the velocities along the X-
axis and the Z-axis.

LiDAR View Head The LiDAR view prediction head is
designed to detect objects in the perspective view. The same
head is used for the LiDAR detector, view transformation,
and the fusion branch with different network weights. The
head includes six independent MLPs as follows:

1. It predicts the category of each object. The output di-
mension is the number of object categories, denoting
the confidence of each category.

2. It regresses the offset of the center of each object on the
BEV plane from the reference points indicated by the
positional embedding. The output dimension is two,
denoting the XY coordinate separately.

3. It regresses the height of each object center. The output
dimension is one.

4. It regresses the logarithms of the XYZ scale of the 3D
bounding box. The output dimension is three.

5. It predicts the angle of each object around the vertical
axis (Z-axis in the LiDAR coordinate space). The out-
put dimension is two, denoting the sin and cos of this
angle.

6. It predicts the velocity in the horizontal plane (XY-
plane in the LiDAR coordinate). The output dimension
is two, denoting the velocities along the X-axis and the
Y-axis.

B.3. Query Initialization

We follow CenterFormer [9] and TransFusion [1] to ini-
tialize our queries using a heatmap, which helps to acceler-
ate the convergence and reduce the number of queries.

Initialization for LiDAR Detector We splatter the
bounding box centers on the BEV onto a category-aware
heatmap Y ∈ [0, 1]H×W×K [3, 8], where K is the
category number, with a Gaussian kernel Yx,y,ki

=

exp

[
(x−cLx,i)

2+(y−cLy,i)
2

2σ2
i

]
, where ki is the category of the

i-th object, (cx,i, cy,i) is its center on the BEV, and σi is
a standard deviation related to the object scale as done in
[1]. The heatmap is calculated for each object separately,
and we combine the multiple-object heatmaps by using the
maximal value at each location. A dense head composed
of 3 × 3 convolutions are attached to the BEV features
F̂L, which is augmented by the semantic transfer. Posi-
tions p0

L,i ∈ R2, i = 1, . . . , NL on the BEV with the high-
est confidence scores in maxki

Ŷxi,yi,ki
are selected as the

reference points on BEV plane, along with their categories
{ki}NL

i=0. The local BEV features at these positions from FL

are fetched. We add the local feature from FL and a learn-
able category embedding {eLki

}NL
i=0 to get the initial LiDAR

query features Q0
L = {q0

L,i}
NL
i=1.

Initialization for Camera Detector For the camera
modality, 3D box centers are projected into the multi-
view images. We follow FCOS [5] to divide the ob-
jects of different sizes after projection into certain levels
of multi-scale image features. We set the size thresholds
to 0, 48, 96, 192,+∞. For each bounding box projected on
the image plane, if its max(length, width) falls between
the i-th and i+ 1-th threshold, the object is assigned to the
i-th scale level. As we do in the LiDAR modality, corre-
sponding projected centers of each feature level are splat-
tered onto a heatmap. We also get the reference points



p0
C = {p0

C,i}
NC
i=1 with top confidence scores from the multi-

view image features, as well as the corresponding categories
{ki}NC

i=0. The corresponding features from the depth-aware
image features F̂C are added with the learnable category
embedding {eCki

}NC
i=0 to get the initial camera query fea-

tures Q0
C = {q0

L,i}
NL
i=1. It is worth mentioning that 3D

objects are projected to multi-scale multi-view images, so
initial queries come from the image features from different
views and different scales.

References
[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1090–1099,
2022. 1, 2, 4

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[3] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 734–750, 2018. 4

[4] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 2, 3

[5] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 4

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[7] Yue Wang and Justin M Solomon. Deep closest point: Learn-
ing representations for point cloud registration. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 3523–3532, 2019. 1

[8] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 4

[9] Zixiang Zhou, Xiangchen Zhao, Yu Wang, Panqu Wang, and
Hassan Foroosh. Centerformer: Center-based transformer
for 3d object detection. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXXVIII, pages 496–513. Springer,
2022. 4

[10] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2


