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1. Details on GNN Propagation in GgPC
Graph neural networks(GNN) are well established for

the application [2, 3, 4, 1] of few-shot image classification.
In our method, we followed EGNN [3] to utilize GNN as
guidance to optimize the intra- and inter-class correlation
within features. For simplicity and convenience, we dis-
cuss the process of the NS -way 1-shot problem and con-
sider that the query set Q contains NQ videos. We let G =
(V,A;S

⋃
Q) be the graph to construct the relationship be-

tween support set videos S and query videos Q. We use the
video features as node features V = {vi}i=1,··· ,|S

⋃
Q| and

the relationship between the node features as edge features
A = {aij}i,j=1,··· ,|S

⋃
Q|, where |S

⋃
Q| = NS +NQ.

Node features are initialized by the enhanced temporal
features after the mean pooling operation on the temporal
dimension, i.e., v0

i = F̃avg
i (∀i ∈ S

⋃
Q). Edge features

aij∈ R2(∀i, j ∈ S
⋃
Q) are 2D vectors representing the

intra- and inter-class relations of the two connected nodes
and are initialized with ground-truth y, as follows:

a0ij =

 [1||0], if yi = yj and i, j ≤ NS ,
[0||1], if yi ̸= yj and i, j ≤ NS ,

[0.5||0.5], otherwise,
(1)

The G consists of L layers, and its propagation includes
node features and edge features updating. Given vl−1

i ∈ RC

and al−1
i ∈ R2 from the layer l− 1, node features’ updating

is a weighted aggregation process of other nodes through
the layers’ edge features, as follows:

vl
i = f l

node

(
Cat

(
[
∑
j

ãl−1
ij1 v

l−1
j ,

∑
j

ãl−1
ij2 v

l−1
j ], dim = 0

))
(2)

where f l
node is a MLP to transform feature and ãl−1

ijb =
al−1
ijb∑

h al−1
ihb

on b ∈ {1, 2}. After the update of node features,
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the edge feature is updated through the (dis)similarities be-
tween two connected features, and the sum of all edge fea-
tures’ values is kept constant, given by:

ālijb =


f l
edge(|vli−vlj|)al−1

ijb∑
h f(|vli−vlh|)al−1

ihb

∑
h a

l−1
ihb , if b = 0

(
1−f l

edge

(
|vli−vlj|

))
al−1
ijb∑

h

(
1−f l

edge(|vli−vlh|)
)
al−1
ihb

∑
h a

l−1
ihb , if b = 1

(3)
alij = ālij/∥ālij∥1 (4)

where f l
edge is a function to calculate the similarities be-

tween two connected nodes. Here we set f l
edge to a four-

layer convolution block, where each layer comprises a 1×1
convolutional layer, batch normalization, and LeakyReLU
activation function.

2. Implementation Details of Experimental
Setup

2.1. Network Architectures

The kernel size for the 1D channel-wise temporal convo-
lution in CTRM is set to 3. The settings of hyperparameters
in each dataset are shown in Tab.1.

Kinetics SSv2 UCF101 HMDB51
γ 0.1 0.5 0.1 0.1
β 0.9 0.5 0.9 0.9
α 0.4 0.6 0.5 0.5

Table 1. The settings of hyperparameters in each dataset.

2.2. Training and Inference

In HPM, when T is set to 8, L is calculated as 32. The
total number of training steps is set to 10. Tab.2 presents
the learning rate and other settings for various datasets. In
this table, lr refers to the learning rate, st iter indicates the
number of iterations per step, steps represents the number



Figure 1. Attention visualization of our GgHM on UCF101 in the 5-way 1-shot setting. Corresponding to the original RGB images (left),
the attention maps without LDTM modules (middle) are compared to the attention maps with our LDTM modules (right).

of steps to change the learning rate when using the multi-
step scheduler, and LRS denotes the multiplication factor
for updating the learning rate at each changing step.

lr st iter steps LRS
Kinetics 2.2e-5 1000 [0,6,9] [1,0.5,0.1]

SSv2 1e-4 7500 [0,6,8,9] [1,0.5,0.1,0.01]
HMDB51 1e-4 1000 [0,2,3,5] [1,0.5,0.1,0.01]
UCF101 5e-05 1500 [0,2,3,5] [1,0.5,0.1,0.01]
Table 2. The settings of hyperparameters in each dataset.



3. Attention Visualization of our GgHM
Fig.1 shows the attention visualization of our GgHM on

UCF101 in the 5-way 1-shot setting. Compared to the orig-
inal RGB images on the left, the attention maps without
LDTM modules (in the middle) are contrasted against the
attention maps with our LDTM modules (on the right). At-
tention maps generated without the LDTM module contain
numerous irrelevant or distracting focus areas. For exam-
ple, the frames in “HorseRiding” show attention to the
background and extraneous objects, diverting focus from
the action. In contrast, attention maps generated using the
LDTM module strongly correlate with the subject acting.
Specifically, the frames in “Skiing” focus on the skier, and
the frames in “TennisSwing” focus on the tennis player.
These observations provide empirical evidence of the effec-
tiveness of our LDTM module in enhancing spatiotemporal
representation.
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