
CL-MVSNet: Unsupervised Multi-view Stereo with
Dual-level Contrastive Learning

(Supplemental Materials)

1. Depth Map Filtering and Fusion

After per-view depth estimation, depth maps inferred
through CL-MVSNet will be filtered via photometric con-
sistency and geometric consistency before depth fusion.
During photometric consistency filtering, pixels with low
confidence will be discarded from depth maps according to
the confidence maps generated by our CL-MVSNet. In the
geometric consistency filtering, pixels with depth estima-
tion inconsistent across neighboring views will be consid-
ered outliers and filtered out. For DTU [1] and Blended-
MVS [6], we use the same filtering strategy as RC-MVSNet
[2]. Specifically, the depth threshold, consistent number,
and probability threshold are set to 0.001, 3, and 0.8, re-
spectively. For Tanks&Temples [4], we adopt the dynamic
consistency checking strategy proposed in [5]. Finally, pix-
els in filtered depth maps will be projected to the world co-
ordinate system to produce 3D dense point clouds.

2. More Ablation Studies on DTU

In this section, we will conduct additional ablation stud-
ies to provide more comprehensive information about our
proposed CL-MVSNet.

2.1. Norms of Photometric Consistency Loss

We first conduct ablation studies to evaluate the effects
of different norm-based photometric consistency losses, as
shown in Tab. 1.

Table 1. Ablation study of different norm-based photometric
consistency losses on DTU [1].

Norm Acc.↓ Comp.↓ Overall↓
L0.25PC 0.376 0.298 0.337
L0.5PC 0.375 0.283 0.329
L0.75PC 0.380 0.292 0.336
L1PC 0.392 0.286 0.339
L2PC 0.391 0.293 0.342

2.2. Number of Views & Input Resolution

As shown in Tab. 2, this study demonstrates that CL-
MVSNet can be used with any number of input views and
can handle input images of different sizes.

Table 2. Ablation study of resolution H × W and number of
input views N on DTU [1].

N H ×W Acc.↓ Comp.↓ Overall↓
3 1184 ×1600 0.392 0.319 0.356
5 1184 ×1600 0.375 0.283 0.329
7 1184 ×1600 0.381 0.279 0.330
9 1184 ×1600 0.384 0.285 0.335
5 864 ×1152 0.390 0.289 0.340
5 512 ×640 0.448 0.370 0.409

2.3. Occlusion Rate

The pixel-level contrastive sample is constructed with
the pixel-level occlusion rate α. To investigate how this hy-
perparameter influences the performance of the model, we
conduct an ablation study with different settings and com-
pare the quantity results, as shown in Tab. 3.

Table 3. Ablation study of the occlusion rate α for the pixel-
level contrastive sample on DTU [1].

α Acc.↓ Comp.↓ Overall↓
0 0.378 0.309 0.344

0.1 0.375 0.283 0.329
0.2 0.380 0.291 0.336
0.3 0.398 0.321 0.360

3. Comparison to SOTA End-to-end Unsuper-
vised Method

The SOTA end-to-end unsupervised method RC-
MVSNet [2], employs a rendering consistency network to
build additional supervisory signals, which may be ineffec-
tive at times due to the inherent gap between novel view
synthesis and depth estimation. Specifically, their proposed
depth rendering consistency loss relies on the sampled point



candidates near the object surface, which are sampled ac-
cording to the depth inferred from the backbone network. If
the backbone network produces incorrect depth estimations,
the sampled points will be also unreasonable, and the ren-
dered depth will be wrong in the end. This can result in the
depth rendering consistency loss failing to guide the model
effectively. In contrast, our method utilizes dual-level con-
trastive learning to construct more effective supervisory sig-
nals, boosting the accuracy, completeness, and overall qual-
ity of 3D reconstruction results.

Moreover, during the training phase, our method con-
verges much faster and consumes less memory than RC-
MVSNet. RC-MVSNet requires 15 epochs with 11 hours
per epoch for training on two NVIDIA Tesla V100s and
consumes 14.5 GB memory for each GPU. In comparison,
under the same conditions, CL-MVSNet needs 16 epochs
with 5 hours per epoch to converge and 12 GB memory for
each GPU.

4. Smooth Operation

Similar to Smooth L1, we have applied a smooth oper-
ation to avoid the significant gradient change near the zero
point:

L0.5(e) =

{
ke2 + b, e < β
∥e∥ 1

2
, e >= β . Hence, our network can

converge smoothly.

5. Limitation and Future Work

Our model has addressed the limitations of indistinguish-
able regions and view-dependent effects, but the accurate
depth estimation in object edge areas remains a challenge.
It is worth noting that this is a common problem in unsu-
pervised MVS methods. To mitigate this issue, we adopt an
edge-aware depth smoothness loss proposed in [3], which
is based on the assumption that the gradient maps of the in-
put reference image and the inferred depth map should be
similar. However, this simple assumption may be invalid
in many cases. For instance, there may be significant color
gradient changes within the same object. In the near future,
we will explore a more effective approach to address this
problem.

6. More Visualization Results

We visualize the reconstructed 3D point clouds from
DTU [1] evaluation set, TanksTemples [4] set, and Blend-
edMVS [6] respectively in Fig. 1, Fig. 2 and Fig. 3. And it
is important to note that our model has been trained solely
on the DTU [1] training set without any fine-tuning. Our
CL-MVSNet shows its robustness and generalizability on
various scenes.

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. International Journal of Computer
Vision, 120:153–168, 2016.
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Figure 1. Reconstruction results on DTU [1].



Figure 2. Reconstruction results on Tanks&Templs [4].



Figure 3. Reconstruction results on on BlendedMVS [6].
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