
Confidence-based Visual Dispersal for Few-shot
Unsupervised Domain Adaptation

Table 1: Overall statistics of datasets used to evaluate the proposed
C-VisDiT method.

Dataset Domain Total images Labeled images Classes

1-shot 3-shots

Office-31 [11]
Amazon (A) 2817 31 93

31DSLR (D) 498 31 93
Webcam (W) 795 31 93

3% 6%

Office-Home [13]

Art (Ar) 2427 73 146

65Clipart (Cl) 4365 131 262
Product (Pr) 4439 133 266
Real (Rw) 4357 131 261

1%

VisDA-C [9] Train 152397 1531 12Validation 55388 -

1-shot 3-shots

DomainNet [8]

Clipart (C) 18703 126 378

126Painting (P) 31502 126 378
Real (R) 70358 126 378

Sketch (S) 24582 126 378

Appendix

A. Additional Datasets Details

We present the overall statistics of the datasets that are
used to evaluate our proposed C-VisDiT in Tab. 1. Office-
31 [11] is a dataset of office images containing 3 domains
(Amazon, DSLR, and Webcam) with 31 classes. Office-
Home [13] also contains office images across 4 domains
(Art, Clipart, Product, Real) with 65 classes in each domain.
VisDA-C [9] is a large simulation-to-real dataset with over
150K images in the training domain and over 55K images
in the validation domain. DomainNet [8] is the most di-
verse and recent cross-domain benchmark to-date. Follow-
ing [14, 2], we use a subset of DomainNet containing 4 do-
mains (Clipart, Real, Painting and Sketch) and 126 classes.
We follow the same settings in [5, 14, 2] and conduct exper-
iments with corresponding numbers of labeled images on
the aforementioned datasets. For labeled image sampling,
we directly leverage the split files1 published by [14] for a
fair comparison with the existing FUDA methods.

1https://github.com/zhengzangw/PCS-FUDA

B. Additional Implementation Details
B.1. Details for the Baseline Model

To enhance the cross-domain feature alignment, we
adopt the prototypical self-supervised learning method
in [14] to optimize the baseline model and denote the ob-
jective as Lself in the article. Following [14], we utilize the
k-means clustering to obtain normalized source class cen-
ters {µs

i}ci=1 and normalized target class centers {µt
i}ci=1.

The class centers are updated via momentum in each train-
ing epoch. For each target image xut

i ∈ Dut, we calculate
two similarity distributions P t

i and P t→s
i as:

P t
i,j =

exp(µt
j · F (xut

i )/t)∑c
k=1 exp(µ

t
k · F (xut

i )/t)
(1)

P t→s
i,j =

exp(µs
j · F (xut

i )/t)∑c
k=1 exp(µ

s
k · F (xut

i )/t)
, (2)

where t is a temperature value. Similarly, we can calcu-
late P s

i and P s→t
i for each source image xs

i ∈ Dls ∪ Dus.
Therefore, the Lself objective in the baseline model can be
formulated as:

Lself =

Nls+Nus∑
i=1

(LCE(P
s
i , cs(i)) +H(P s→t

i ))

+

Nut∑
i=1

(LCE(P
t
i , ct(i)) +H(P t→s

i )),

(3)

where H(·) is the entropy metric and c(·) denotes the cluster
index of the corresponding sample.

B.2. Details for Model Training

Backbone Choices. We use ResNet-50 [3] pretrained
on ImageNet [10] as our backbone F (·) when validating
our method on the Office-31, the Office-Home and the
VisDA-C datasets following [5, 14]. On the DomainNet
dataset, we use ResNet-101 pretrained on ImageNet follow-
ing PCS [14] for a fair comparison. In the meantime, we
use ResNet-50 with pre-trained generalization weights pro-
vided by BrAD [2] for fair comparisons with FUDA results
in BrAD.

1



Model Structure Details. For fair comparison with [5,
14, 2], we replace the last fully-connected layer with a ran-
domly initialized linear layer and set the output feature di-
mension as 512. We perform the L2-normalization on the
output features before sending them to the classifier ϕ(·).

Hyper-parameter Choices. During model training, we
use the SGD optimizer with a momentum of 0.9. As
for the model learning rate, we choose 1e-2 for Office-
31, Office-Home, DomainNet (comparing with PCS), 1e-
3 for VisDA-C, and 1e-4 for DomainNet (comparing with
BrAD). Throughout the training, we fix the batch size at 64.
We simply set the values of λMI and λself as in [14]. For
visual dispersal objectives, we empirically set α = 0.75,
λX-VD = 1.0, λI-VD = 0.1, rX

h ∈ {0.75, 0.85}, rI
E = 0.1

and rI
H ∈ {0.65, 0.75}.

Training Device Choices. We use one NVIDIA
GeForce RTX 3090 GPU for training and evaluation.

B.3. Implementation on the VisDA-C dataset

On the Office-31 [11], the Office-Home [13], and the
DomainNet [8] datasets, we follow [14] and utilize the
k-means clustering for Lself when training the baseline
model. On the significantly bigger VisDA-C dataset, to
improve the training efficiency, we substitute the time-
consuming k-means clustering with the attention-based pro-
totype generating strategy in [6] and conduct only source-
to-target transfer learning in loss Lself .

Simplified Lself in the baseline model. As shown
in Tab. 1, the VisDA-C [9] dataset is significantly bigger.
Training with k-means clustering on the VisDA-C dataset
leads to unacceptable time costs. In order to improve the
training efficiency of our proposed C-VisDiT, we substitute
the time-consuming k-means approach with an attention-
based strategy similar to [6]. We also provide an easier
form of Lself to further reduce the calculation complex-
ity. Specifically, for each source sample xs

i ∈ Dls ∪ Dus,
we construct a memory bank to store the source sample fea-
tures and update it by momentum in each epoch in order to
reduce the impact of training fluctuation. The memory bank
is denoted as Bs = [fs1 , f

s
2 , · · · , fsNs

] where fsi is the feature
of xs

i inside the memory bank. We obtain the semantic dis-
tribution p(y|fsi ) = [p1, p2, · · · , pc] for each source sam-
ple using the feature stored inside the memory bank. We
concatenate the semantic distributions for all source sam-
ples as Ks = [p(y|fs1 )T , p(y|fs2 )T , · · · , p(y|fsNs

)T ], where
Ns = Nls+Nus. We then construct the source class centers
in an attention-based manner:

[µ̂s
1, µ̂

s
2, · · · , µ̂s

c] = BsK
T
s . (4)

With the attention-based source class centers µ̂s
j , we calcu-

late the similarity distribution for each target sample P̂ t→s
i

following Eq. (2). We formulate the simplified Lself objec-

Table 2: Adaptation accuracy (%) comparison on 1-shot and 3-
shots labeled source per class on the DomainNet dataset.

Method DomainNet: Target Acc.

R→C R→P R→S P→C P→R C→S S→P Avg

1-shot labeled source

Source Only 15.9 22.1 10.5 12.8 18.6 5.7 5.8 13.1
MME [12] 13.8 29.2 9.7 16.0 26.0 13.4 14.4 17.5
CDAN [7] 16.0 25.7 12.9 12.6 19.5 7.2 8.0 14.6
MDDIA [4] 18.0 30.6 15.9 15.4 27.4 9.3 10.2 18.1
CDS [5] 21.7 30.1 18.2 17.4 20.5 18.6 22.7 21.5

PCS [14] 39.0 51.7 39.8 26.4 38.8 23.7 23.6 34.7
C-VisDiT (Ours) 39.1 52.2 38.1 27.6 43.8 23.3 27.1 35.9

BrAD [2] 48.6 55.1 52.8 44.6 47.8 47.9 51.0 49.7
+C-VisDiT (Ours) 51.0 55.8 54.2 45.6 47.9 49.9 52.3 51.0

3-shot labeled source

Source Only 23.7 40.3 22.9 19.3 48.3 19.1 15.8 27.1
MME [12] 22.8 46.5 14.5 25.1 50.0 20.1 24.9 29.1
CDAN [7] 30.0 40.1 21.7 21.4 40.8 17.1 19.7 27.3
MDDIA [4] 41.4 50.7 37.4 31.4 52.9 23.1 24.1 37.3
CDS [5] 44.5 52.2 40.9 40.0 47.2 33.0 40.1 42.5

PCS [14] 45.2 59.1 41.9 41.0 66.6 31.9 37.4 46.1
C-VisDiT (Ours) 48.2 58.7 42.1 41.6 68.3 32.5 45.3 48.1

BrAD [2] 60.6 62.8 61.6 56.6 63.6 59.8 61.0 60.9
+C-VisDiT (Ours) 64.0 65.0 63.9 60.6 65.6 61.6 63.1 63.4

tive as:

Lself =

Nut∑
i=1

(H(P̂ t→s
i )). (5)

Other implementation details. It is important to choose
a decent initialization for training on the VisDA-C dataset.
We train the model backbone with labeled source sam-
ples in a fully-supervised manner and utilize the weights
of the trained backbone as the initialization for the train-
ing. Besides, during the first training epoch, we freeze
the classification head ϕ(·) and train our model with only
Lcls + λMI · LMI .

C. Detailed Results for each Adaptation Set-
ting on the DomainNet Dataset

DomainNet [8] is a challenging large-scale domain
adaptation benchmark featuring 126 object classes. We
present the overall performance of our C-VisDiT model on
the DomainNet dataset in Tab. 4, Page 6 of the article. Here
we present the detailed performance for each adaptation
setting in Tab. 2. According to Tab. 2, our C-VisDiT can
achieve 1.2%/2.0% and 1.3%/2.5% accuracy gain (1-shot/3-
shots) comparing with PCS [14] and BrAD [2], respectively.
Looking into each adaptation setting, our C-VisDiT can re-
alize state-of-the-art results on 25 out of 28 settings. These
results show that our proposed C-VisDiT establishes new
state-of-the-art performance on the most challenging bench-
mark for FUDA, well demonstrating its superiority.

D. Additional Analysis Experiment
Ablation Studies on the Office-Home, the VisDA-C,

and the DomainNet datasets. We present the result of ab-



Table 3: Performance contribution of each component on the
Office-Home (3% / 6% labeled source), the VisDA-C (1% la-
beled source), and the DomainNet (1-shot / 3-shots labeled source)
datasets in terms of adaptation accuracy (%).

Method LX-VD LI-VD Office-Home VisDA-C DomainNet

Baseline × × 60.0 / 63.0 78.9 48.0 / 61.3
C-VisDiT-X

√
× 61.5 / 64.5 79.6 50.5 / 62.8

C-VisDiT-I ×
√

60.8 / 63.9 80.0 50.4 / 63.0
C-VisDiT

√ √
62.3 / 65.4 80.5 51.0 / 63.4
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Figure 1: Analysis on the matching accuracy and the adaptation
accuracy for both nearest source matching (“Near.”) and random
source matching (“Rand.”) strategies in the W→D (1-shot) setting
on the Office-31 dataset.

Table 4: Performance comparison of X-VD between different
sample similarity measurement choices on the Office-31 dataset
(%).

Method 1-shot / 3-shots

Cosine similarity 79.1 / 84.7
Euclidean distance (Ours) 79.2 / 84.9

Table 5: Adaptation accuracy when DE
ut is added to T H

ut for C-
VisDiT-I on the Office-31 dataset (%).

Method T E
ut T H

ut 1-shot / 3-shots

Baseline - - 77.6 / 83.8

C-VisDiT-I Dls ∪ DE
ut (Ours) DE

ut ∪ DH
ut 78.7 / 85.0

Dls ∪ DE
ut (Ours) DH

ut (Ours) 78.8 / 85.0

Table 6: Comparison between C-VisDiT and PCS [14] in terms of
the training efficiency on the VisDA-C dataset.

PCS [14] C-VisDiT (Ours)

Training time (h) 16.21 3.49
Target accuracy (%) 79.0 80.5
Speedup 1 4.64

lation studies on the Office-Home [13], the VisDA-C [9],
and the DomainNet [8] datasets in Tab. 3. We can see that
both C-VisDiT-X and C-VisDiT-I can achieve better results
compared to the baseline. Combining C-VisDiT-X and C-
VisDiT-I, i.e., adding both X-VD and I-VD to the baseline
model, results in the highest performance gain. These re-

Table 7: Performance comparison with other related works on the
Office-31 dataset (%).

Method 1-shot / 3-shots

Baseline 77.6 / 83.8
MixStyle [16] 78.3 / 84.3
FlexMatch [15] 77.8 / 83.9
C-VisDiT (Ours) 81.0 / 85.7

Table 8: Adaptation accuracy with UDA methods using full source
labels on the Office-31 dataset (%).

Method Origin +C-VisDiT

DANN [1] 82.2 82.9
DSAN [17] 88.4 88.8

sults, again, show that our X-VD and I-VD strategies are
effective and complementary.

Analysis on the nearest source matching in X-VD. In
our proposed X-VD strategy, we conduct nearest source
matching, where we match a given target sample to its near-
est labeled source sample. To verify the effect of our nearest
source matching, we analyze the matching accuracy, which
reveals the consistency between the target sample and its
neighboring labeled source sample. We compare our near-
est source matching (“Near.”) with random source match-
ing (“Rand.”), in which we match a given target sample to a
random labeled source sample. As illustrated in Fig. 1, the
employed nearest source matching can consistently obtain
better matching accuracy than the random source matching
(see dashed lines) during the training, which is in accor-
dance with the comparison of the adaptation accuracy (see
solid lines). These observations indicate that our nearest
source matching can pull two samples with similar seman-
tics but from different domains closer to each other, thus
greatly boosting the adaptation.

Comparison to other sample similarity measurement
metrics. In our proposed X-VD strategy, we utilize Eu-
clidean distance to find similar samples across domains. To
verify the effect of measurement choices, we replace Eu-
clidean distance with the cosine similarity metric between
feature vectors. According to Tab. 4, both metrics yield sim-
ilar performance. This suggests that the effectiveness of our
method is not affected much by the sample similarity mea-
surement metrics.

Necessity to train on easy target samples in I-VD. Fig.
4 in Page 8 of the article indicates that easy target sam-
ples suffer from slight accuracy loss during training. To
show that it is unnecessary to train on easy target sam-
ples as a compensation for the accuracy loss, we further
add easy target samples DE

ut to the training hard sample set
T H
ut = DE

ut ∪ DH
ut. As shown in Tab. 5, adding DE

ut to T H
ut

yields comparable results with the standard implementation
T H
ut = DH

ut, indicating that it is not necessary to train on the
easy target samples.
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Figure 2: Analysis of hyper-parameter rX
h , rI

E , and rI
H in D→W (1-shot) on the Office-31 dataset. To reach promising performance, both

rX
h , rI

E and rI
H should be smaller than a value threshold (0.85 for rX

h , 0.2 for rI
E , and 0.8 for rI

H ).
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Figure 3: Analysis of hyper-parameter λX-VD, λI-VD, and α in D→W (1-shot) on the Office-31 dataset. The value of λX-VD hardly affects
adaptation accuracy on the target domain, while the value of λI-VD should be smaller than a value threshold (around 0.15). The value of α
should be between a lower threshold (around 0.6) and an upper threshold (around 0.85).

Efficiency Comparison with PCS on VisDA-C. In Ap-
pendix B.3, we claim that our simplified training pipeline on
the VisDA-C dataset could effectively improve the training
efficiency. To show the effect after simplifying the base-
line model, we compare our simplified C-VisDiT with the
existing state-of-the-art PCS [14] in terms of training effi-
ciency. We train both methods on the VisDA-C dataset for
20 epochs from scratch, and report the training time and ac-
curacy results. As indicated by Tab. 6, the proposed method
can achieve significant speedup, i.e., 4.6 times compared
with PCS, while enjoying a superior performance by 1.5%.
These results demonstrate that our simplifying strategies are
especially effective on large datasets.

Comparison to other related works. We provide per-
formance comparisons with other related works in related
fields, namely MixStyle [16] and FlexMatch [15]. For
MixStyle, we incorporate it into our baseline model using
its published code. For FlexMatch, we implement it to
FUDA by applying it to target samples based on the base-
line model. The results are shown in Tab. 7. Comparing
to our C-VisDiT, both MixStyle and FlexMatch achieve in-
ferior performance, and even worse than our C-VisDiT-X
(79.2 / 84.9). Again, this demonstrates the superiority of
our C-VisDiT, especially in the field of FUDA.

E. Results on the UDA Problem

To demonstrate the exclusive advantage of our C-VisDiT
for FUDA, we further investigate the effect of C-VisDiT on
the UDA problem using full source labels. We formally
choose two remarkable UDA methods, i.e., DANN [1] and
DSAN [17], as the baseline model, and equip them with
our C-VisDiT. As shown in Tab. 8, our strategies still lead
to performance gains, albeit limited (0.7% on DANN and
0.4% on DSAN). This can be attributed to that the knowl-
edge is more confident in UDA due to its abundant supervi-
sion. As a result, the reliability of knowledge transfer can
be guaranteed, leading to better adaptation on target sam-
ples. Therefore, on the UDA problem, our confidence-based
strategies cannot have significant effect as in FUDA. These
results confirm that our confidence-based strategies have a
distinctive edge for FUDA.

F. Hyper-parameter Analysis

r analysis. In our proposed C-VisDiT, we manu-
ally choose the ratios controlling the proportion of dif-
ferent confidence-level samples. The choice of r hyper-
parameters is correlated to the specific settings, as our
model achieves different adaptation accuracy in different



Table 9: Performance comparison of different hyper-paramameter
β choices on the Office-31 dataset (%).

Method β > 0.5 random β β < 0.5

C-VisDiT-X 79.2%/84.9%(Ours) 78.8%/84.8% 78.5%/84.3%
C-VisDiT-I 78.4%/84.6% 78.6%/84.7% 78.8%/85.0%(Ours)

settings. Here we provide a detailed hyper-parameter anal-
ysis for the D→W (1-shot) setting on the Office-31 dataset.
We investigate the effect of rX

h , rI
E , and rI

H via adaptation
accuracy. As shown in Fig. 2, the adaptation performance
basically remains stable in a wide range of r values in the
D→W (1-shot) setting, e.g., rX

h ≤ 0.85, rI
E ≤ 0.2, and

rI
H ≤ 0.8. As a result, we choose rX

h = 0.75, rI
E = 0.1 and

rI
H ≤ 0.65 for the D→W (1-shot) setting. For other set-

tings, we empirically choose rX
h ∈ {0.75, 0.85}, rI

E = 0.1
and rI

H ∈ {0.65, 0.75}.
λX-VD and λI-VD analysis. We investigate the effect of

λX-VD and λI-VD via adaptation accuracy in the D→W (1-
shot) setting on the Office-31 dataset. The results are shown
in Fig. 3. While the adaptation performance is not sensitive
to λX-VD, it suffers from bigger values of λI-VD in the D→W
(1-shot) setting. We empirically choose λX-VD = 1.0 and
λX-VD = 0.1 in other settings for model evaluation experi-
ments.

α analysis. We investigate the effect of α utilized
to sample β in visual dispersal strategies, where β ∼
Beta(α, α). Similarly, we conduct experiments in the
D→W (1-shot) setting on the Office-31 dataset. The results
are shown in Fig. 3. Empirically, we choose α = 0.75 for
the proposed C-VisDiT method in all settings.

β analysis. In Equation 10 and 14, Page 4 and 5 of the
article, we use hyper-parameter β to control the sample im-
portance inside hybrid samples. In X-VD, we ensure that
β > 0.5 to put more importance on target samples to be
learned. In I-VD, we guarantee that β < 0.5 to put more
importance on har target samples to be learned. As shown
in Tab. 9, our choice of β yields the best performance, im-
plying that it is beneficial towards both X-VD and I-VD
strategies.

G. Image Retrieval Results

To qualitatively present that our proposed C-VisDiT can
align semantically similar images across domains, we ana-
lyze our proposed C-VisDiT and the existing state-of-the-
art, PCS [14], via image retrieval. Given an unlabeled
source sample xus

i , we find the three closest target do-
main samples measured by Euclidean distance in the feature
space. As shown in Fig. 4, some features trained with PCS
are aligned via visual textures and patterns instead of actual
image semantics. For example, PCS tends to match letter
trays (row 3) with bookcases, as both objects have similar
layer structures. As a comparison, our proposed C-VisDiT
aligns features that are semantically similar across domains,

providing correct retrieval results for unlabeled source sam-
ples.



(a) PCS (b) C-VisDiT (Ours)

Query (Source) Retrievals (Target)

Figure 4: Image retrieval examples of the closest target domain samples given an unlabeled sample from the source domain, using PCS [14]
(a) and our proposed C-VisDiT (b). The query images (from top to bottom) belong to the following categories: desktop computer, file
cabinet, letter tray, mug, and paper notebook. PCS features tend to match images with similar visual patterns and textures. (Row 1: PCS
matches monitors to the desktop computer query. Row 2: PCS matches speakers to the file cabinet query. Row 3: PCS matches bookcases
to the letter tray query. Row 4: PCS matches bottles to the mug query. Row 5: PCS matches ring binders to the paper notebook query.) As
a comparison, our C-VisDiT correctly matches images with similar semantics.
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