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1. Summary
In this supplementary, we present additional experimen-

tal results and details of our Get3DHuman. Sec. 2 first
visualizes rendering results of multi-view, sampling, re-
texturing, interpolation of Get3DHuman, and our pseudo-
GT. Then in Sec. 3, we further show some examples of
GET3D trained with non-T-pose RenderPeople dataset and
EVA3D [6]). Finally, we explain the relevant details of our
Get3DHuman in Sec. 4.

2. Visualizations results of Get3DHuman
2.1. Multi-view results.

We randomly sampled some examples and then used
Blender to render the geometry and appearances from dif-
ferent angles. Fig. 5 shows these results. From different
views, our Get3DHuman is able to obtain high-quality ge-
ometry and texture results.

2.2. Sampling results.

Fig. 6 visualize the textured mesh sampling from a Gaus-
sian distribution. The results show that our Get3DHuman is
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able to generate 3D textured human mesh with diverse ge-
ometries and appearances.

2.3. Re-texturing results.

Fig. 7 visualize the re-texturing results of the fixed ge-
ometry by different texture latent codes. Examples of re-
texturing given shapes. We can see different textures are di-
verse, plausible, and suitable for the given shape since our
texture branch is conditioned on shape branch features.

2.4. Interpolation results.

Fig. 8 and 9 visualize the interpolation results of two sets
of shape/texture latent codes to generate the right-/left-most
examples, then interpolate both the shape and texture latent
codes to generate the in-between examples. More results
show in the video.

2.5. Inversion results.

Fig. 8 and 9 visualize the interpolation results of two sets
of shape/texture latent codes to generate the right-/left-most
examples, then interpolate both the shape and texture latent
codes to generate the in-between examples. More results
show in the video.

Figure 1: More inversion results with two rendering meth-
ods.

2.6. Visualizing our pesudo-GT.

We extract pseudo-GT by using two prior networks, a
human image synthesis network [3] and a single-view re-
construction network [7], which are trained using our Ren-
derPeople data. The images synthesized by [3] have a
higher probability of some defects (limb deformities, in-
complete limbs and etc.), and the reconstruction result of



[7] is insufficient to deal with uncommon postures and
exotic clothes, and we cannot directly use their results.
Therefore, we manually selected 69,069 reasonable results
from 300,000 generated data as our pseudo-gt to train
Get3DHuman.

Noted that although our pseudo-GT data is manually se-
lected, it is definitely not comparable to commercial data
sets (such as RenderPeopel) in terms of geometry and
texture quality. Fig. 2 visualize several examples of our
pseudo-GT.

Figure 2: The visual representation of our pesudo-GT. We
remove the poor quality results (left) through manual selec-
tion and only keep some high quality results (right).

3. Results of GET3D and EVA3D

3.1. Results of GET3D [4] (our Renderpeople data)

The original GET3D [4] paper is trained in a T-posed
RenderPeople dataset. However, our purchased Render-
People data contains 396 high-quality non-T-posed 3D hu-
man models with high-resolution texture maps that could
be rendered into photorealistic images. We attempt to train
GET3D with our RenderPeople data, but the results are poor
in terms of geometry and textures, see Fig. 3, possibly due
to the large pose space and limited training data. Its re-
sults could possibly be improved with more training data,
but high-quality 3D data are expensive and difficult to ob-
tain.

3.2. Results of EVA3D [6].

EVA3D has just opened its code recently, and Fig. 4 vi-
sualizes four sampling results of EVA3D generated from a
pretrain model from Github [5]. It introduces SMPL prior
to the 3D generation network. Observing its results, the im-
age quality in the front view is far better than other views,
and the overall geometry is too flat and has many artifacts.
These shortcomings are also reasonable, because they only

Figure 3: The results of GET3D trained with our non-T-
pose Renderpeople data.

use SMPL prior and front view images for training, and lack
data from non-front view information.

Figure 4: The results of EVA3D with the pretrain model
(512x256 − deepfashion) from Github [5]. Note that, in
this figure, all images are generated from the source code of
EVA3D, not rendered by Blender.

4. Notes about the Get3DHuman
In our Get3DHuman, We obtain 3D human meshes with

diverse geometries and textures by sampling two latent
codes (shape & texture) from a Gaussian distribution. Given
a shape latent code Zs, Get3DHuman generates a shape fea-
ture Fs, a shape feature volume Fsv , and produces a high-
quality human shape by using a fixed PIFu shape decoder
fs. Given a shape feature Fs and a texture latent code Zt,
Get3DHuman generates a texture feature volume Ftv , and
textures the shape by using a fixed PIFu texture decoder ft.
Feature Volume and PIFu decoder In Get3DHuman,
each shape feature volume and its corresponding texture
feature volume represents a 3D textured human model.
The size of shape & texture feature volumes are both
{bs, 256, 128, 128}, bs means the number of batch size.

During the training process of Get3DHuman, the shape
PIFu decoder and the texture PIFu decoder are fixed, with-
out training.
Training data There are mainly two kinds of training data
in our pseudo-GT: with latent code and without latent code.
All pseudo-GT data are utilized in Adv. losses, the pseudo-



GT with latent codes which are manual pick and generated
from StyleGAN-Huma is used in latent prior losses (See
Fig.2 in paper),
Geometry evaluation settings. Similar to any GAN, we
adapt Fréchet point cloud distance (FPD) [2] to evaluate the
diversity and quality of the generated shapes. Specifically,
we first sample a number of points (4096) on the mesh sur-
face and pass this point cloud to a pre-trained shape classi-
fication network using DGCNN [8] as the backbone. The
feature vectors from this classification network are used to
calculate FPD for the generated shapes.

We also test Chamfer Distance based (dCD) Coverage
(COV) and Minimum Matching following [1, 4] to evaluate
the similarity between a set of generated meshes and the
reference set of pseudo-GT meshes. Our test set contains
2k textured model estimated from recon prior network as
pseudo-GT. For FPD, we randomly generate 2k shapes for
evaluation. For COV and MMD, Following GET3D, we
randomly generate 5 times as many shapes as the test set
(i.e. 10k).



Figure 5: Visualization multi-view images rendering by blender.



Figure 6: Visualize the results of generated textured mesh.



Figure 7: Visualization of re-texturing the fixed geometry by different texture latent code.



Figure 8: Interpolation examples. We randomly sample two sets of shape/texture latent codes to generate the right-/left-most
examples, then interpolate both the shape and texture latent codes to generate the in- between examples.



Figure 9: Interpolation examples. We randomly sample two sets of shape/texture latent codes to generate the right-/left-most
examples, then interpolate both the shape and texture latent codes to generate the in- between examples.
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