
Supplementary Materials for ActFormer: A GAN-based Transformer towards
General Action-Conditioned 3D Human Motion Generation

Liang Xu2,3* Ziyang Song5* Dongliang Wang1,6 Jing Su1 Zhicheng Fang1 Chenjing Ding1

Weihao Gan7 Yichao Yan2 Xin Jin3,4 Xiaokang Yang2 Wenjun Zeng3,4 Wei Wu1,6

1SenseTime Research 2Shanghai Jiao Tong University 3Eastern Institute of Technology, Ningbo
4Ningbo Institute of Digital Twin 5The Hong Kong Polytechnic University 6Shanghai AI Laboratory

7Mashang Consumer Finance Co., Ltd.

We provide the details about our network architec-
ture (Appendix A), additional implementation details (Ap-
pendix B), additional qualitative results (Appendix C) and
additional samples from our GTA Combat dataset (Ap-
pendix D).

A. Network architecture
Tab. 1 presents the network architecture we designed on

the NTU-2P dataset. In the ActFormer generator, Gaus-
sian Linear Error Units (GELU) [3] activations are used for
Transformer encoders. In the GCN discriminator, Leaky
Rectified Linear Units (LeakyReLU) [4] activations are
adopted. This network architecture can also be applied
to other datasets. The dimension of inputs/outputs may
slightly vary due to changes in pose representations or the
number of persons. On single-person action datasets, I-
Former modules in the ActFormer generator are not needed.

I-Former and T-Former. Here we give a detailed illus-
tration of the I-Former and T-Former modules. In both
modules, given P · (T + 1) tokens (corresponding to a
T-frame, P-person motion sequence) as input, we repre-
sent the current token embedding by F p

t ∈ RCin , where
t ∈ [1, ..., T + 1] and p ∈ [1, ..., P ]. First, we apply lin-
ear transformations to each token to compute {query, key,
value} vectors qpt , k

p
t , v

p
t ∈ Rd as,

qpt = WqF
p
t , k

p
t = WkF

p
t , v

p
t = WvF

p
t , (1)

where the learnable transform parameters Wq,Wk,Wv ∈
Rd×Cin are shared among all tokens. Then we discuss sub-
sequent steps in I-Former and T-Former, respectively.

In the I-Former module, we apply self-attention among
persons in every single frame independently by query-key

*Denotes equal contribution. Work done when Liang and Ziyang
were at SenseTime. Corresponding authors: Dongliang Wang (wang-
dongliang@senseauto.com), Yichao Yan (yanyichao@sjtu.edu.cn) and
Xin Jin (jinxin@eias.ac.cn).

dot product and the weighted sum of values as below,

wp,p′

t = qpt · kp
′

t ,∀t ∈ [1, ..., T + 1], (2)

Gp
t =

∑
p′

softmaxp′(
wp,p′

t√
d

)vp
′

t . (3)

Now we got the transformed token embedding Gp
t ∈ Rd by

the I-Former.
In the T-Former, self-attention is performed among

frames of each person separately. To be specific, the T-
Former transforms the token embedding into Hp

t ∈ Rd as
in the following,

wp
t,t′ = qpt · kpt′ ,∀p ∈ [1, ..., P ], (4)

Hp
t =

∑
t′

softmaxt′(
wp

t,t′√
d
)vpt′ . (5)

Interaction modeling in GCN discriminator. Here we
illustrate in detail how concatenation models multi-person
interactions in our GCN discriminator. We drop the tem-
poral dimension T for simplicity and observe a K-node
graph of the spatial human skeleton. Each node contains
a vector fk ∈ RP ·D concatenated by P persons. We focus
on a specific node with KN neighbors in the skeleton, as
shown in Fig. 1(a) (KN = 4 including the center node it-
self, P = 2, D = 3 in this example). A spatial GraphConv.
kernel w aggregates information from all the neighboring
nodes and produce an output feature g for the center node,
i.e.,

g =

KN∑
k=1

P ·D∑
l=1

wk
l · fk

l . (6)

If we split multiple persons’ motion in the same node, i.e.,
transform fk ∈ RP ·D into fk ∈ RP×D, Eq. (6) can be



Network Architecture Params.

Generator

(Input projection): Linear(Ch=(120, 200))

1,359,675

(Class embedding): Linear(Ch=(26, 200))
(I-Former): Transformer(Ch=200, n heads=8)
(T-Former): Transformer(Ch=200, n heads=8)
(I-Former): Transformer(Ch=200, n heads=8)
(T-Former): Transformer(Ch=200, n heads=8)
(Output projection): Linear(Ch=(200, 75))

Discriminator

GraphConv.(Ch=(150, 32), K=(2, 4), G=(25, 25))

5,174,593

GraphConv.(Ch=(32, 64), K=(2, 4), G=(25, 11))
GraphConv.(Ch=(64, 128), K=(2, 4), G=(11, 5))
GraphConv.(Ch=(128, 256), K=(2, 4), G=(5, 5))
GraphConv.(Ch=(256, 512), K=(5, 4), G=(5, 1))
(Class embedding): Linear(in ch=26, out ch=512)
(Output projection): Linear(in ch=512, out ch=1)

Table 1. Network architecture on NTU-2P dataset. Params. is short for the number of parameters. The tuple for Ch (channel) denotes
input/output channels of the layer. In GraphConv., the tuple for K (kernel) denotes spatial/temporal kernel sizes of the graph convolution
layer. The tuple for G (graph) represents the number of nodes (joints) in the input/output spatial skeleton graph.

=

(b)

(a)

C
ha

nn
el

s

Person 1 Person 2

Figure 1. Illustration about interaction modeling in GCN dis-
criminator. We make a theoretical analysis about (a) how concate-
nation enforces information aggregation from multiple persons.
We also check (b) the weights of a trained discriminator to verify
whether information from multiple persons is aggregated in prac-
tice.

rewritten as

g =

KN∑
k=1

P ·D∑
l=1

wk
l · fk

l =

KN∑
k=1

P∑
p=1

D∑
d=1

wk
pd · fk

pd. (7)

As visualized in Fig. 1(a), the output center node feature g
aggregates information from all the KN neighboring joints
of all the P persons.

Besides theoretical analysis, we also check absolute val-
ues of trained weights from our GCN discriminator’s 1st
layer. As shown in Fig. 1(b), each output node feature in-
deed gets contributions from multiple persons. The infor-
mation of different persons has been entangled since then,
and human interaction modeling naturally exists in the fol-
lowing network layers.

B. Additional implementation details
Pose representations. On NTU RGB+D 120 and GTA
Combat, local body poses are represented by normalized

limb vectors instead of raw joint coordinates. On NTU-
13 and BABEL, the continuous 6D representations [6] are
employed to replace axis-angle joint rotations from SMPL
body models.

Library credits. Our approach is implemented based on
PyTorch [5]. For comparison to baseline methods, we use
the official implementations of Action2Motion [1] and AC-
TOR [2].

Training. In the ActFormer’s training, we adopt the
Adam optimizer with betas (0, 0.999) and learning rate
0.0002 for both the generator and discriminator. The batch
size is set to 64. During training, every time the discrimina-
tor is trained 4 times, the generator will be trained once. On
each dataset, we train all models (including baseline meth-
ods) for 500 epochs.

In the training of the action recognition model, we adopt
the SGD optimizer, with an initial learning rate of 0.1 de-
cayed by 0.1 in the 10th and 50th epoch, respectively. The
model is trained for 80 epochs on each dataset, and the batch
size is set to 64.

Evaluation. We use each model to generate a sample set
with 100 sequences per action category for evaluation. All
motion sequences in our experiments hold 60 frames.

C. Additional qualitative results
Fig. 2 displays more generated motions by our approach.

Compared to qualitative results in the main paper, we show
more samples per action for multi-person actions to indicate



that diversity also exists in our multi-person motion gener-
ation.

D. Additional GTA Combat samples
We provide more samples from our GTA Combat

dataset. As shown in Fig. 3, by randomly combining inter-
active relationships and combat actions, the synthetic mo-
tions in GTA Combat present sufficient diversity. From dy-
namic clips, we see both combat actions of attackers and
triggered reactions of attacked ones look natural.

References
[1] Action2motion official code implementation. https://

github.com/EricGuo5513/action-to-motion.
[2] ACTOR official code implementation. https://github.

com/Mathux/ACTOR.
[3] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities

and stochastic regularizers with gaussian error linear units.
CoRR, abs/1606.08415, 2016.

[4] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rec-
tifier nonlinearities improve neural network acoustic models.
In Proc. ICML, volume 30, page 3, 2013.

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8024–8035, 2019.

[6] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural net-
works. In CVPR, pages 5745–5753. Computer Vision Foun-
dation / IEEE, 2019.

https://github.com/EricGuo5513/action-to-motion
https://github.com/EricGuo5513/action-to-motion
https://github.com/Mathux/ACTOR
https://github.com/Mathux/ACTOR


To
uc

h 
ob

je
ct

Sw
in

g 
bo

dy
 p

ar
t

Pu
sh

H
ig

h 
fiv

e

Ex
ch

an
ge

 th
in

gs

C
om

ba
t

To
uc

h 
ob

je
ct

Sw
in

g 
bo

dy
 p

ar
t

Figure 2. Additional qualitative results. We generate ”Touch object” and ”Swing body part” actions from BABEL, ”Push” ”High five”
and ”Exchange things” actions from NTU-2P, and ”Combat” actions from GTA Combat.



Figure 3. Additional samples from GTA Combat dataset.


