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This appendix presents more details of the pro-
posed Snippet-attentive Semantic-statistical Alignment with
Stochastic Sampling Augmentation (SSA2lign) and is orga-
nized as follows: first, we introduce the detailed implemen-
tation of SSA2lign with specific hyperparameter settings,
supported by additional results of hyperparameter sensi-
tivity analysis to show the robustness of SSA2lign. Sub-
sequently, we present details of the cross-domain action
recognition benchmarks for evaluating SSA2lign, including
Daily-DA and Sports-DA; lastly, we compare in detail our
SSA2lign with related but different FSDA and UDA/VUDA
methods to highlight our novelty. Code will be provided at:
https://github.com/xuyu0010/SSA2lign.

1. Implementation Details
Brief Review of SSA2lign. In this work, we propose
the Snippet-attentive Semantic-statistical Alignment with
Stochastic Sampling Augmentation (SSA2lign) to address
Few-Shot Video Domain Adaptation (FSVDA) by augment-
ing the source and target domains and performing domain
alignment at the snippet level. SSA2lign firstly augments
the source and target domain data by a simple yet effective
stochastic sampling process that makes full use of the abun-
dance of snippet information and then performs semantic
alignment from three perspectives: alignment based on se-
mantic information within each snippet, cross-snippets of
each video, and across snippet-level data distribution. To
further improve the stability of snippet-level alignment, a
statistical alignment strategy is additionally adopted, while
snippet attention is proposed to weigh the impact of differ-
ent target snippets on the domain alignment dynamically.
In this section, we present the detailed implementation of
SSA2lign, whose pipeline is demonstrated in Fig. 1.
TimeSFormer as Feature Extractor. To obtain features
from snippets during training and videos during testing,
we instantiate the Transformer-based TimeSFormer [2] as
the feature extractor thanks to its capability in obtain-
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Methods
Sports-DA

k = 10 k = 5 k = 3

U→S KS→S U→S KS→S U→S KS→S
Avg.

UniFormer w/T 68.47 72.21 67.37 70.58 64.37 67.42 68.39
MMD 71.42 73.58 71.63 70.95 65.89 68.89 70.39
ACAN 71.37 74.21 73.28 72.11 67.68 68.26 71.15
d-SNE 71.79 73.74 73.05 74.95 69.32 68.05 71.82
SSA2lign 78.21 79.63 75.16 79.05 73.79 74.16 76.67

Table 1. Comparison with the UniFormer-XXS [11] backbone.

ing features that include both spatial and temporal infor-
mation. TimeSFormer extracts spatial and temporal fea-
tures with separate space-time attention blocks based on
self-attention [20] and obtains very competitive results on
various action recognition benchmarks [2]. While other
Transformer-based video models, such as Swin [13] and
ViViT [1], also achieve competitive performances on ac-
tion recognition, TimeSFormer possesses the least amount
of parameters, requiring only 60% parameters of Swin and
only 40% parameters of ViViT. The final classifier is im-
plemented as a single fully connected layer. Both the fea-
ture extractor and the subsequent classifier are shared across
source and target data.

It should also be noted that TimeSFormer is not the sole
feature extractor available for SSA2lign. To show that the
superiority of SSA2lign is model agnostic, we adopted a
variant of UniFormer [11] (UniFormer-XXS) as a much
more lightweight backbone and compared SSA2lign with 3
other best performing methods (MDD [30], ACAN [25] and
d-SNE [24]) under this backbone using the same benchmark
settings as in Tables 4-6 of the paper for Sports-DA [28].
The results in Table 1 show that SSA2lign still brings sig-
nificant improvement under the UniFormer backbone, and
confirms that the superiority of SSA2lign is model agnostic.
Training Details and Hyper-parameters. For train-
ing, we initialize the TimeSFormer feature extractor from
pre-trained weights obtained by pre-training on Kinetics-
400 [10]. For more efficient training, we freeze the first 8
blocks of TimeSFormer, leaving the last 4 blocks to be fully
trainable, with the learning rate set at 0.005. 5 additional



Figure 1. Pipeline of SSA2lign. Source and target snippets are first obtained through the Stochastic Sampling Augmentation, whose
features are obtained through the shared feature extractor. SSA2lign then aligns the source and target domains at the snippet level with
the Semantic-statistical Alignment, while weighing the impact of different target snippets through snippet attention, whose weight is built
based on the output prediction of target snippets, obtained from a shared classifier with source snippets. The blue and orange lines imply
the data flow for source and target videos respectively. Best viewed in color.

Figure 2. Hyper-parameter sensitivity on the U→S task with k = 10 (top), k = 5 (mid), and the KS→S task with k = 10 (bot).

layers with 10 parameters are trained from scratch, with
their learning rates set to be 10 times that of the pretrained-
loaded trainable layers (blocks). These are linear and batch-
norm layers added to the TimeSFormer backbone, follow-
ing prior UDA works [12, 27], and are not method-specific.
In total, The trainable parameter size for the backbone and
SSA2lign is 41.53 M.

For the tasks constructed from the Daily-DA
dataset [28], we train a total of 30 epochs, while we
train a total of 50 epochs for tasks constructed from the

Sports-DA dataset [28]. The stochastic gradient descent
(SGD) algorithm [3] is used for optimization, with the
weight decay set to 0.0001 and the momentum set to 0.9.
During the training phase of SSA2lign, the batch size is
set to 24 input snippets per GPU, with 12 source snippets
from 12 source videos and 12 target snippets from 4 target
videos (r = 3 by default). For a fair comparison, the batch
size is set to 24 input videos per GPU when training all
comparing methods. All experiments are implemented
with the PyTorch [16] library and conducted on 2 NVIDIA



A6000 GPUs. We set the length of snippets and the
number of snippets per target video via SSA empirically as
m = 8, r = 3. Hyper-parameters λsem = 1.0, λstat = 1.0
and λP = 0.6 are empirically set and are fixed. As shown
in Section 4.3 and Fig. 2 of the paper, the performance
of SSA2lign is robust to hyper-parameters λsem, λstat

and λP as well as r when r ⩾ 3, with minimal variations
and maintains the best results with high computation
efficiency with all the default hyper-parameter settings. To
further illustrate the robustness of SSA2lign towards the
sensitivity of λsem and λstat which control the strength
of the semantic and statistical snippet alignment losses,
λP which relates to the update of target prototypes and
r the number of snippets per target video, we present the
additional results of hyper-parameter sensitivity analysis
under different experimental settings. Specifically, we
present the results of the U→S task with k = 10, k = 5
(the same as presented in Fig. 2 of the paper), and the
results of the KS→S task with k = 10, as shown in Fig. 2
of this appendix.

The additional results further justify that SSA2lign is ro-
bust to hyper-parameters λsem, λstat and λP as well as r
when r ⩾ 3 under all examined experimental settings, while
achieving the best results with high computation efficiency
with the default hyper-parameter settings.

2. Cross-domain Action Recognition Bench-
marks

In this paper, to evaluate our proposed SSA2lign, we uti-
lized two cross-domain action recognition benchmarks: the
Daily-DA and Sports-DA [28]. In this section, we provide
more details on each benchmark.

2.1. Daily-DA

The Daily-DA dataset is a recently proposed cross-
domain action recognition dataset for VUDA [28]. It
is more comprehensive and challenging compared to
prior benchmarks such as UCF-Olympic [18] and UCF-
HMDBfull [5] which have resulted in saturated performance
due to limited domains (only 2 domains in each dataset)
and number of videos per domain. Daily-DA includes
videos of daily actions from four domains and incorporates
both normal videos and low-illumination videos. Specifi-
cally, Daily-DA is built from four datasets: the dark dataset
ARID (A) [26], as well as HMDB51 (H), Moments-in-
Time (M) [14], and Kinetics-600 (KD) [4], which are video
datasets widely used for action recognition benchmark-
ing [15]. Compared with other action recognition datasets
such as Moments-in-Time and Kinetics, ARID is comprised
of videos shot under adverse illumination conditions, char-
acterized by low brightness and low contrast. Statistically,
the RGB mean and standard deviation values (std) of videos

in ARID are much lower among datasets leveraged in Daily-
DA [25], which strongly suggests a larger domain shift be-
tween ARID and the other action recognition datasets. The
Daily-DA includes a total of 16,295 training videos and
2,654 testing videos from 8 categories as listed in Table 2,
with each category corresponding to one or more categories
in the original datasets as demonstrated in Table 3.

2.2. Sports-DA

To further demonstrate the efficacy of our proposed
SSA2lign on large-scale cross-domain datasets, we further
adopt the Sports-DA dataset as another cross-domain ac-
tion recognition benchmark. Comparatively, Sports-DA
contains almost double the amount of training and test-
ing videos of Daily-DA. Specifically, it includes a total
of 36,003 training videos and 4,721 testing videos from
23 categories of sports actions, collected from three large-
scale datasets: UCF101 (U) [17], Sports-1M (S) [9], and
Kinetics-600 (KS) [4], as shown in Table 2. Similar to
Daily-DA, each action class corresponds to one or more cat-
egories in the original datasets as presented in Table 4. With
more than 40,000 training and testing videos, the Sports-DA
benchmark is one of the largest cross-domain action recog-
nition benchmarks introduced.

3. Detailed Comparison with Related FS(V)DA
and (V)UDA Methods

In this paper, we proposed SSA2lign to address the
more realistic and challenging FSVDA task, which achieves
state-of-the-art performances with outstanding improve-
ments on both cross-domain action recognition benchmarks
(average 13.1% on Daily-DA tasks and average 4.2% on
Sports-DA tasks). To further highlight the novelty of
SSA2lign, we compare our proposed SSA2lign with prior
FSDA/FSVDA and UDA/VUDA methods. Specifically, we
compare with d-SNE [24] proposed for FSDA, PASTN [7]
designed for FSVDA, ACAN [25] introduced for ACAN,
and DM-ADA [23] which is an image-based UDA method
that leverages MixUp [29]. These methods are all compared
from two perspectives: the tasks they tackle and the tech-
niques leveraged, as displayed in Table 5.
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