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A. Baseline Description
Here we introduce the baselines we compare in the paper.
• Res-sup. [8]: The model uses deep recurrent neural

networks (RNNs) to model human motion, with the goal of
learning time-dependent representations.

• CSM [2]: The model uses a convolutional long-term
encoder is used to encode the whole given motion sequence
into a long-term hidden variable, and uses a decoder to pre-
dict the remainder of the sequence.

• Traj-GCN [7]: The model encodes temporal informa-
tion by working in trajectory space and designs a graph
convolutional network to learn graph connectivity automati-
cally.

• DMGNN [4]: The model uses a multiscale graph to
extract features at individual scales and fuse features across
scales for a more comprehensive motion feature learning.

• MSRGCN [1]: The model uses a series of GCNs that
are used to extract features from fine to coarse scale and
then from coarse to fine scale, enforcing the network to learn
more representative features.

• HisRep [6]: The model extracts motion attention to
capture the similarity between the current motion context
and the historical motion sub-sequences.

• STSGCN [9]: The method models the human pose dy-
namics only with a graph convolutional network, consisting
of temporal evolutions and spatial joint interactions.

• PGBIG [5] : The model designs a multi-stage pre-
diction framework where each stage predicts initial guess
for the next stage. Each stage’s model consists of spatial
dense graph convolutional Networks (S-DGCN) and tempo-
ral dense graph convolutional networks.

• SPGSN [3]: The model proposes adaptive graph scatter-
ing leveraging multiple trainable band- pass graph filters to
decompose pose features into richer graph spectrum bands
and models body-parts separately.

B. More Implementation Details
Here we further introduce more implementation details

that are specific to different tasks. For Human3.6M short-
term tasks, we set the number of attention layers L as 3,
the dimension of each head as 32, and weight decay as 1e-

Table 1: Effect of different numbers of attention layers L on
H3.6M.

L 80ms 160ms 320ms 400ms AVG

1 9.6 21.2 45.6 57.0 33.4
2 9.5 20.9 44.4 55.2 32.5
3 9.5 20.6 43.4 54.1 31.9
4 9.4 20.6 43.7 54.5 32.1

12. For Human3.6M long-term tasks, we set the number of
attention layers L as 4, the dimension of each head as 32,
and weight decay as 1e-4. For CMU Mocap short-term tasks,
we set the number of attention layers L as 4, the dimension
of each head as 32, and weight decay as 1e-12. We reduce
the learning rate using a ratio 0.9 for every 5 epochs. For
CMU Mocap long-term tasks, we set the number of attention
layers L as 5, the dimension of each head as 16, and weight
decay as 5e-6. We additionally concatenate the velocity
and acceleration with the position. We reduce the learning
rate using a ratio 0.9 for every 5 epochs. For 3DPW short-
term tasks, we set the number of attention layers L as 3, the
dimension of each head as 32, and weight decay as 5e-8. We
reduce the learning rate using a ratio 0.9 for every 5 epochs.
For 3DPW long-term tasks, we set the number of attention
layers L as 3, the dimension of each head as 16, and weight
decay as 5e-4. We additionally concatenate the velocity with
the position. We reduce the learning rate using a ratio 0.9
for every 5 epochs.

C. Additional Experimental Results
C.1. Effect of Number of Attention Layers

Table 1 shows the effect of different numbers of two
iterative attention layers L on the H3.6M dataset. We find
that i) initially increasing L leads to better performance
since the model network learning capability increases; and
ii) when the number of layers is sufficient, the performance
tends to be stable.

C.2. Comparison of Model Size and Performance

To verify the applicability of AuxFormer, we compare
AuxFormer to existing methods in terms of the parameter
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Table 2: Comparison of model size and performance in short-term prediction on H3.6M dataset.

DMGNN Traj-GCN MSR-GCN HisRep SPGSN AuxFormer (Ours)

ParaSize (M) 4.82 2.56 6.30 3.18 5.66 1.00
AVG MPJPE 49.0 38.6 38.1 36.4 34.5 31.9

Table 3: Comparisons of long-term prediction on Human3.6M. Results at 560ms and 1000ms in the future are shown. Bold/underline font
represent the best/second best result.

Motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing
millisecond 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms

Res-Sup. 81.7 100.7 79.9 100.2 94.8 137.4 121.3 161.7 110.1 152.5 156.3 184.3 143.9 186.8 165.7 236.8
Traj-GCN 54.1 59.8 53.4 77.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0
DMGNN 71.4 85.8 58.1 86.7 50.9 72.2 81.9 138.3 102.1 135.8 144.5 170.5 71.3 108.4 125.5 188.2
MSRGCN 52.7 63.0 52.5 77.1 49.5 71.6 88.6 117.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3

PGBIG 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8
SPGSN 46.9 53.6 49.8 73.4 46.7 68.6 89.7 118.6 70.1 100.5 111.0 143.2 66.7 102.5 110.3 165.4

Ours 43.8 52.0 50.3 74.7 42.0 63.0 77.6 102.3 71.6 103.0 110.5 141.6 66.6 102.5 91.6 137.1
Motion Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

millisecond 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms 560ms 1000ms
Res-Sup. 119.4 176.9 166.2 185.2 197.1 223.6 107.0 162.4 126.7 153.2 173.6 202.3 94.5 110.5 129.2 165.0
Traj-GCN 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3
DMGNN 104.9 146.1 75.5 115.4 118.0 174.1 78.4 123.7 85.5 113.7 183.2 210.2 70.5 86.9 93.6 127.6
MSRGCN 101.6 139.2 78.2 120.0 102.8 155.5 77.9 121.9 76.3 106.3 111.9 148.2 52.9 65.9 81.1 114.2

PGBIG 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3
SPGSN 96.5 133.9 75.0 116.2 98.9 149.9 75.6 118.2 73.5 103.6 102.4 138.0 49.8 60.9 77.4 109.6

Ours 96.9 134.8 76.1 119.7 98.5 151.1 78.9 123.9 74.6 106.4 103.3 133.3 47.3 58.8 75.3 107.0

Table 4: Prediction MPJPEs of methods on CMU Mocap for both short-term and long-term prediction, as well as the average prediction
results across all the actions. Bold/underline font represent the best/second best result.

Motion Basketball Basketball Signal Directing Traffic Jumping
millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup. [8] 15.45 26.88 43.51 49.23 88.73 20.17 32.98 42.75 44.65 60.57 20.52 40.58 75.38 90.36 153.12 26.85 48.07 93.50 108.90 162.84
DMGNN [?] 15.57 28.72 59.01 73.05 138.62 5.03 9.28 20.21 26.23 52.04 10.21 20.90 41.55 52.28 111.23 17.42 26.82 38.27 40.08 46.40
Traj-GCN [7] 11.68 21.26 40.99 50.78 97.99 3.33 6.25 13.58 17.98 54.00 6.92 13.69 30.30 39.97 114.16 14.53 24.20 37.44 41.10 51.73
MSR-GCN [1] 10.28 18.94 37.68 47.03 86.96 3.03 5.68 12.35 16.26 47.91 5.92 12.09 28.36 38.04 111.04 12.84 20.42 30.58 34.42 48.03
STSGCN [9] 12.56 23.04 41.92 50.33 94.17 4.72 6.69 14.53 17.88 49.52 6.41 12.38 29.05 38.86 109.42 16.70 27.58 36.15 36.42 55.34
PGBIG [5] 9.53 17.53 35.32 44.23 84.14 2.71 4.88 10.77 14.63 50.19 4.83 9.77 23.62 32.23 102.32 12.69 23.18 38.31 42.24 51.71
SPGSN [3] 10.24 18.54 38.22 48.68 89.58 2.91 5.25 11.31 15.01 47.31 5.52 11.16 25.48 37.06 108.14 10.75 16.67 26.07 30.08 52.92

Ours 9.35 17.06 35.46 45.50 80.77 2.62 4.79 10.57 14.20 48.19 6.27 12.37 28.93 38.43 111.97 9.98 15.78 25.31 28.81 41.64
Motion Running Soccer Walking Washing Window

millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup. [8] 25.76 48.91 88.19 100.80 158.19 17.75 31.30 52.55 61.40 107.37 44.35 76.66 126.83 151.43 194.33 22.84 44.71 86.78 104.68 202.73
DMGNN [?] 17.42 26.82 38.27 40.08 46.40 14.86 25.29 52.21 65.42 111.90 9.57 15.53 26.03 30.37 67.01 7.93 14.68 33.34 44.24 82.84
Traj-GCN [7] 14.53 24.20 37.44 41.10 51.73 13.33 24.00 43.77 53.20 108.26 6.62 10.74 17.40 20.35 34.41 5.96 11.62 24.77 31.63 66.85
MSR-GCN [1] 12.84 20.42 30.58 34.42 48.03 10.92 19.50 37.05 46.38 99.32 6.31 10.30 17.64 21.12 39.70 5.49 11.07 25.05 32.51 71.30
STSGCN [9] 16.70 27.58 36.15 36.42 55.34 13.49 25.24 39.87 51.58 109.63 7.18 10.99 17.84 22.61 44.12 6.79 12.10 24.92 36.66 69.48
PGBIG [5] 12.69 23.18 38.31 42.24 51.71 11.09 20.62 39.48 48.72 99.98 6.23 10.34 16.84 19.76 33.92 4.63 9.16 20.87 27.34 65.69
SPGSN [3] 10.75 16.67 26.07 30.08 52.92 10.86 18.99 35.05 45.16 99.51 6.32 10.21 16.34 20.19 34.83 4.86 9.44 21.50 28.37 65.08

Ours 9.98 15.78 25.31 28.81 41.64 10.01 18.21 36.31 45.79 95.98 5.76 9.16 15.69 18.80 34.81 4.69 9.39 21.87 28.83 72.90
Motion Average

millisecond 80 160 320 400 1000
Res-sup. [8] 24.21 43.75 76.19 88.93 139.00
DMGNN [?] 14.07 24.44 45.90 55.45 104.33
Traj-GCN [7] 9.94 18.02 33.55 40.95 81.85
MSR-GCN [1] 8.72 15.83 30.57 38.10 79.01
STSGCN [9] 10.80 18.19 31.18 41.05 81.76
PGBIG [5] 8.20 15.41 30.13 37.27 76.69
SPGSN [3] 8.30 14.80 28.64 36.96 77.82

Ours 7.54 13.78 27.95 35.39 76.32

numbers and prediction results in short-term prediction on
H3.6M. The results is shown in Table 2. We can see that our
AuxFormer has the lowest MPJPE and the smallest model
size, showing better applicability.

D. Limitation and Future Work
This work considers the masked prediction and denoising

as auxiliary tasks for more comprehensive spatial-temporal
dependency modeling. A possible future work is exploring
more auxiliary tasks and more corruption strategies. Also,
this work considers deterministic human motion prediction.
We will explore the effect of auxiliary tasks in stochastic

human motion prediction where the model is required to
predict diverse future motions.
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