
A. Supplementary Material

In this supplementary material, §A.1 contains implemen-
tation details and §A.2 contains further results as well as
ablations. In §A.3, we discuss paradigm differences of CiT
from existing approaches.

A.1. Implementation Details

A.1.1 PyTorch Pseudo Code

To facilitate implementation of CiT, we provide the PyTorch
pseudo-code in Algorithm 4 below.

Algorithm 4: CiT: PyTorch Pseudo Code
1 # b: maximum training steps as budget.
2 # d: iterator of raw data.
3 # t_meta: textual metadata.
4 # bsz: batch_size.
5 # t: threshold.
6 # gamma: target radio for curation.
7 # s: number of expected pairs.
8

9 c = 0

10 while c < b:

11 x_meta = model(t_meta)

12 x_meta = normalize(x_meta)

13 d_c = []

14 while len(d_c) < s:

15 x_imgs, x_txts = next(d)

16 x_txts = model(x_txts)

17 x_txts = normalize(x_txts)

18 v = x_txts @ x_meta.t()

19 sel = max(v) > t

20 b_ratio = sum(sel) / len(sel)

21 if b_ratio < gamma:

22 sel = max(v).topk(

23 k=int(bsz*gamma), dim=0)

24 d_c.extend((x_imgs[sel], x_txts[sel]))

25

26 for (x_imgs, x_txts) in batchify(d_c):

27 x_imgs, x_txts = model(x_imgs, x_txts)

28 x_imgs, x_txts = normalize(x_imgs,x_txts)

29 # scale: learnable log logit scale
30 l = exp(scale) * x_imgs @ x_txts.t()

31 labels = arange(bsz)

32 loss = cross_entropy(l, labels)

33 loss.backward()

34 c += 1

A.1.2 Dataloader Implementation

For efficiency, we only load text during the curation loop
and the training loop uses the curated indices to reload the
full image-text pairs. Our implementation also supports in-
memory storage of curated image-text pairs in case the data
source is not randomly accessible for (re-)loading curated
data, where all s pairs of training data can be stored in
the CPU memory with image tensors represented as uint8

Hyperparameter Value

Optimizer AdamW
Optimizer momentum �1 = 0.9, �2 = 0.999
Optimizer ✏ 1e-8
Weight Decay (proj.) 1.0
Weight Decay (other) 0.2
Base Learning Rate 5e-4
Learning Rate Schedule cosine decay
Minimum Learning Rate 1e-5
Gradient Clipping None
Warm-up % of Train Steps 4%
Batch size 16,384
GPUs 16 Nvidia V100 32GB GPUs
precision float16
Max BERT len. 32
Train Aug. RandomResizedCrop(224, scale=(0.5, 1.0))
YFCC15M/YFCC100M Aug. shuffle/join tags[38]
Eval Aug. Resize(256), CenterCrop(224)
AugReg rgb Mean (0.5, 0.5, 0.5)
AugReg rgb Std. (0.5, 0.5, 0.5)
Other encoder rgb Mean (0.485, 0.456, 0.406)
Other encoder rgb Std. (0.229, 0.224, 0.225)

Table 9: Hyperparameters of CiT Training.

Data Source Metadata b t �

YFCC15M IN-1K 5K 0.55 0.003
YFCC15M IN-21K 8K 0.55 0.003
YFCC15M multi. 8K 0.55 0.003
YFCC100M IN-1K 5K 0.7 0.01
LAION400M IN-1K 5K 0.6 0.01
LAION400M IN-21K 30K 0.65 0.01
LAION400M multi. 16K 0.6 0.01
RAW IMG-TXT IN-1K 8K 0.7 0.003
RAW IMG-TXT IN-21K 60K 0.75 0.003
RAW IMG-TXT multi. 30K 0.7 0.003

Table 10: Hyperparameters of CiT Curation.

data. We use a larger batch size for curation (compared to
training) to speed up CiT.

A.1.3 Detailed Implementation Settings

The hyper-parameters of CiT training are shown in Table 9.
We mostly follow [38, 20, 21]. CiT is trained on 16 GPUs
with a global batch size of 16,384 (1024 per GPU).

Hyperparameters for CiT curation outlined in §3 of the
main paper are shown in Table 10. We use different thresh-
olds t and minimal ratios � for each dataset/metadata com-
bination to fit the training into a budget b shown in the table
as well. We use the same values for all variants of vision en-
coders. Due to smaller size, we use a lower t for YFCC15M
and CC12M, whereas for YFCC100M and Raw Img-Text
Crawl we use a higher t to focus on high-quality data from
the raw data source, in order to roughly meet the budget b.

Single GPU Setting. We provide more details on the im-
plementation of the extremely efficient single GPU setup
used for zero-shot evaluation on multiple tasks in Table 12.
We can fit a batch size of 1,536 into a single 32GB V100



GPU and train for b = 5000 steps. To ensure the training
can be finished quickly, we set � = 0.05. Further to re-
duce the chance of using the minimal ratio during curation,
we perform a pre-curation on YFCC15M for each task us-
ing BERT-SimCSE with a threshold of 0.45 to remove pairs
with low relevance.

A.1.4 Implementation Differences from LiT

While we aim for a close reproduction of LiT [38], there are
a few tricks that our implementation does not incorporate
and we suspect the differences on our LiT reproduction on
YFCC stem from those. Below we list some tricks known
to us, but there could be more differences we are not aware
of since we have no access to LiT’s full preprocessing and
training code.
Preprocessing. For the captions, LiT performs extra filter-
ing and removes titles that start with “DSC”, “IMG”, “Pic-
ture”. Also, LiT removes text consisting of only the word
“image” or text that contains a large fraction of digits.
Joint Contrastive Loss. LiT adopts a joint contrastive loss
over 3 text fields in YFCC15M and shows the gain in Figure
8 of the LiT paper [38]. Since this technique is specific to
the type of captions in the specific YFCC data, we remove
it from our implementation and randomly sample one of the
three text fields to pair with a training image.
Text encoder. LiT adopts various text encoders such
as BERTbase and BERTlarge. This work consistently uses
BERTbase for all main results to have a fair comparison.

A.1.5 Additional Ablations

This section extends ablations in Table 1 of the main paper
to (i) evaluation prompts and (ii) training objectives.
Evaluation Prompts. We first verify the effects of LiT’s
extra prompts on CiT in Table 11a. We obtain a +0.2% gain
by adding them to the CLIP prompts.
Training Objective. We ablate the Limg2txt training objec-
tive which our approach uses (see §3.2 of the main paper).
In Table 11a we see that this variant provides a +0.2% gain
over CLIP’s objective that also incorporates a text2img loss.

A.2. Additional Results

This section extends the results of CiT in the main pa-
per to full results across 26 CLIP/SLIP benchmarks on
YFCC15M and LAION400M and an extra ablation study.

A.2.1 Full Results on YFCC15M

We show the full results of Table 7 in main paper above
in Table 12 below. On average, CiT-multi-meta (52.6) is
slightly better than CiT-21K-meta (51.7), which is better

Eval. Prompts Acc

CLIP+LiT prompts 61.4

CLIP prompts only 61.2

(a) Evaluation Prompts

Objective Acc

img2txt obj. 61.4

CLIP obj. 61.2

(b) Training Objec-
tive

Table 11: Additional ablation experiments. We use the de-
fault setup (MoCo-v3 / BERTbase-SimCSE) and YFCC15M as data
source and report IN-1K Accuracy.

than CiT-sep-meta and CiT-1K-meta (47.2). It appears that
the broader ImageNet-21K wordnet taxonomy works well
across datasets, and combining metadata from all down-
stream tasks is only slightly better than that. We note that
training on the larger metadata does not introduce much
extra curation compute since forwarding the raw exam-
ples takes the majority of computation. Nevertheless, we
observe that larger metadata takes longer to converge and
therefore increase the training budget to b = 8000 for CiT-
21K-meta and CiT-multi-meta. We expect larger budgets
will lead to even better results.

Besides what was already discussed in the main paper,
we observe that CiT performs even better on larger mod-
els or models trained with supervised (AugReg IN-21K) or
weakly supervised (SWAG) data than the unsupervisedly
pre-trained MoCo-v3 on IN-1K. Out-of-domain issues (e.g.
MNIST) are present even for larger vision encoders.

A.2.2 Full Results on LAION400M

In Table 13, we show the result of CiT trained on
LAION400M and evaluated on 26 CLIP/SLIP benchmarks.
With a larger data source, we realize CiT takes more time
to converge especially with more metadata, which can be
attributed to more data meeting the curation criteria. We set
b = 16000 for CiT-multi-meta and b = 30000 for CiT-21K-
meta. The trend is similar to YFCC15M but with better
performance aross the benchmarks. Similar as in Table 12,
CiT-multi-meta is better than CiT-21K-meta, but this time
the gap is larger. In addition to the longer training, we be-
lieve that the combined metadata from 26 benchmarks are
more effective on larger pre-training data.

A.2.3 Full Results on Raw Image-Text Crawl

In Table 14, we show the result of CiT trained on our raw
image-text crawl and evaluated on 26 benchmarks. With a
larger raw data source, we realize CiT takes more time to
converge. We set b = 30000 for CiT-multi-meta and b =
60000 for CiT-21K-meta. The trend is similar to LAION-
400M but raw Image-Text Crawl is not cleaned for vision-
language association. Similar as in Table 13, CiT-multi-
meta is better than CiT-21K-meta, but the gap is larger. We
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CLIP [21, 20]
ViT-B/16 scratch 27 50.6 66.0 34.5 38.8 51.1 4.0 5.4 21.2 28.5 60.9 53.3 8.4 17.3 90.5 30.2 21.5 6.1 35.1 10.5 53.5 28.5 22.1 10.8 52.4 50.7 37.6 34.2
ViT-L/16 scratch 189 59.5 72.9 41.5 40.3 53.6 6.9 6.4 20.6 27.9 65.4 55.0 10.3 34.5 94.2 22.7 28.8 5.8 41.4 12.6 54.9 34.3 24.0 12.9 54.3 50.1 40.4 37.4
SLIP[20]
ViT-B/16 scratch 41 59.5 78.6 45.2 38.7 53.4 5.4 5.7 26.1 31.1 71.0 56.6 9.8 19.6 94.4 20.3 28.9 14.5 34.0 11.6 55.4 37.7 26.9 17.5 52.8 51.1 42.8 38.0
ViT-L/16 scratch 284 64.4 87.8 56.4 39.8 58.9 8.6 7.8 26.8 32.0 76.6 59.4 13.2 36.0 96.6 27.7 36.5 7.2 28.8 15.6 54.4 42.6 30.0 14.1 53.4 50.1 46.2 41.2
CiT-1K-meta
ViT-B/16 MoCo-v3 5 45.6 81.0 49.9 30.4 44.9 6.3 8.3 26.8 80.0 71.2 25.1 7.3 26.0 95.2 19.1 14.3 6.9 22.2 6.2 54.1 34.7 24.7 13.4 50.7 50.1 61.2 38.5
ViT-B/16 AugReg 8 57.9 92.3 74.2 36.9 52.5 7.7 5.6 25.2 77.9 84.5 38.8 8.3 31.2 94.4 16.6 24.3 6.5 17.2 6.4 59.1 47.8 32.2 13.3 52.0 50.1 68.9 41.6
ViT-L/16 AugReg 8 60.0 93.6 77.8 36.3 54.0 9.0 5.7 25.6 79.8 87.3 45.2 9.7 29.2 96.1 20.9 32.8 7.0 36.0 7.6 52.8 51.5 35.2 12.6 53.0 49.7 71.6 43.8
ViT-H/14 SWAG 11 79.0 91.6 68.1 35.3 56.9 26.2 12.5 30.0 88.8 86.4 47.6 8.1 31.3 97.8 27.6 46.4 7.3 34.2 14.5 50.3 54.7 43.8 12.3 51.8 51.0 73.3 47.2

CiT-21K-meta
ViT-B/16 MoCo-v3 15 51.2 84.4 53.5 45.7 52.3 7.6 9.0 31.6 69.2 73.8 56.1 10.6 24.5 95.7 30.1 23.4 7.9 28.5 9.2 51.0 39.5 28.7 15.0 49.3 49.1 57.4 40.6
ViT-B/16 AugReg 23 75.3 93.8 75.7 57.8 59.8 9.7 10.1 35.4 68.3 87.9 74.3 12.1 27.4 97.1 30.8 30.6 7.3 24.3 9.9 50.5 54.7 37.4 13.6 53.8 50.1 63.7 46.6
ViT-L/16 AugReg 29 78.9 95.1 78.6 60.5 61.9 11.6 10.9 35.1 74.2 90.5 75.4 14.8 34.8 98.0 24.7 35.5 7.5 25.7 10.9 50.8 57.4 40.7 14.8 49.9 48.7 67.7 48.3
ViT-H/14 SWAG 39 92.2 92.9 70.9 59.0 64.7 36.9 14.9 40.3 87.7 90.9 77.4 10.1 32.7 99.1 38.8 53.2 9.3 15.9 20.5 50.7 62.2 49.4 12.9 46.8 44.2 71.4 51.7

CiT-multi-meta
ViT-B/16 MoCo-v3 11 51.3 81.8 50.5 50.7 51.6 9.5 14.6 30.8 75.6 73.3 58.7 10.3 26.2 95.6 23.2 19.1 7.8 14.6 9.4 50.8 39.7 28.0 14.7 52.8 50.0 58.8 40.4
ViT-B/16 AugReg 11 77.8 94.0 76.5 63.9 60.1 10.3 13.1 35.2 79.0 88.9 79.4 12.2 33.0 96.2 31.6 29.3 10.2 17.4 9.6 50.8 56.0 38.0 12.5 55.8 47.8 67.0 47.9
ViT-L/16 AugReg 16 80.4 95.3 79.4 65.6 61.9 13.3 11.3 35.1 79.9 90.6 80.1 10.7 37.8 97.4 29.3 35.0 7.8 13.8 10.7 49.7 59.5 41.3 13.0 54.5 47.9 70.5 48.9
ViT-H/14 SWAG 31 91.8 90.7 71.3 65.6 62.4 47.9 19.7 40.8 91.7 91.3 81.2 10.7 37.5 98.0 23.9 46.4 11.0 12.4 20.2 51.3 64.3 50.2 13.5 54.6 47.1 73.4 52.6

CiT-sep.-meta (single GPU)
ViT-B/16 MoCo-v3 4 59.1 82.2 55.2 56.6 50.7 13.0 13.1 32.8 74.8 77.6 65.9 16.9 13.8 96.3 17.1 21.6 7.6 40.6 9.4 53.5 42.7 27.8 14.2 52.2 50.9 50.7 42.2
ViT-B/16 AugReg 5 79.1 94.4 75.2 73.8 60.6 19.4 17.4 36.6 78.1 88.0 79.8 12.4 39.2 97.0 31.1 29.1 11.1 30.1 9.9 51.9 54.9 37.1 19.2 52.5 50.0 56.8 49.4
ViT-L/16 AugReg 7 83.8 94.8 79.6 76.9 60.4 19.6 17.2 36.0 77.8 89.6 82.2 12.1 39.0 96.7 24.8 31.2 9.7 26.9 10.7 57.6 59.1 39.9 14.9 46.8 51.2 60.1 49.9

ViT-H/14 SWAG 11 92.1 89.9 71.8 71.3 65.4 52.0 20.9 38.7 90.6 90.4 84.8 15.1 30.6 92.8 26.8 47.1 13.4 34.8 20.8 59.4 65.8 50.1 14.0 48.5 51.7 67.0 54.1

Table 12: CiT trained on YFCC15M and evaluated on 26 CLIP/SLIP benchmarks: we vary metadata on IN-1K, IN-21K and combined
class names on 26 tasks (CiT-multi-meta) with a single training and run 26 separate training on each task with a single GPU (CiT-sep.-
meta).
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CLIP (WIT400M) [21]
ViT-B/32 scratch 458 84.4 91.3 65.1 37.8 63.2 59.4 21.2 44.5 87.0 87.9 66.7 51.9 47.3 97.2 49.4 60.3 32.2 39.4 17.8 58.4 64.5 47.8 24.8 57.6 59.6 63.2 56.9
ViT-B/16 scratch 981 89.2 91.6 68.7 39.1 65.2 65.6 27.1 46.0 88.9 89.3 70.4 56.0 52.7 98.2 54.1 65.5 43.3 44.0 23.3 48.1 69.8 52.4 23.4 61.7 59.8 68.6 60.1
ViT-L/14 scratch 6803 92.9 96.2 77.9 48.3 67.7 77.3 36.1 55.3 93.5 92.6 78.7 87.2 57.5 99.3 59.9 71.6 50.3 23.1 32.7 58.8 76.2 60.3 24.3 63.3 64.0 75.3 66.2
OpenCLIP *
ViT-B-32 scratch 458 n/a 90.8 70.2 n/a 67.0 79.2 16.8 54.3 86.8 83.3 68.3 37.4 42.7 95.5 51.6 n/a 42.0 28.8 14.7 54.6 n/a n/a 16.3 n/a 52.6 62.9 n/a
ViT-B-16 scratch 981 n/a 91.7 71.0 n/a 69.6 83.7 17.5 51.3 89.2 83.5 69.3 66.6 42.9 97.0 50.3 n/a 43.5 19.0 18.1 60.5 n/a n/a 28.8 n/a 54.7 67.0 n/a
ViT-L-14 scratch 6803 n/a 94.7 77.4 n/a 72.6 89.6 25.1 60.3 91.9 84.2 75.4 76.4 50.1 98.0 61.8 n/a 50.0 20.8 23.1 48.6 n/a n/a 24.2 n/a 56.3 72.7 n/a
CiT-1K-meta
ViT-B/16 MoCo-v3 26 31.2 80.7 56.7 29.5 41.7 12.6 3.9 35.2 85.9 82.3 19.1 16.3 25.0 89.7 20.0 19.7 14.5 42.2 3.7 55.3 34.8 23.0 14.4 49.5 49.3 67.0 38.6
ViT-B/32 AugReg 62 45.0 86.6 68.8 34.5 48.1 12.1 3.8 35.3 87.0 87.6 34.5 10.2 29.2 89.8 19.7 23.0 10.5 33.1 4.4 50.6 45.5 27.7 15.2 48.5 50.4 67.5 41.1
ViT-B/16 AugReg 63 45.4 87.8 70.9 33.7 50.8 12.4 3.3 38.0 86.2 89.0 31.5 9.7 26.4 90.0 25.3 25.3 13.2 34.9 5.2 54.7 50.0 31.5 14.7 50.4 49.3 73.0 42.4
ViT-L/16 AugReg 27 45.3 90.6 76.3 36.3 54.7 13.6 5.0 35.9 87.2 92.1 32.0 10.2 20.0 91.3 28.2 31.2 10.6 21.4 5.5 51.7 50.9 33.6 16.1 48.9 50.1 75.7 42.9
ViT-H/14 SWAG 26 65.4 89.8 68.7 36.4 56.5 38.0 7.9 41.7 89.4 88.5 41.4 10.2 30.5 94.3 34.6 41.5 12.0 19.1 12.3 49.5 57.0 42.6 13.2 51.5 46.5 76.2 46.7

CiT-21K-meta
ViT-B/16 MoCo-v3 70 64.8 85.0 63.1 59.5 56.3 26.2 8.1 40.2 87.6 87.1 60.6 17.8 34.5 95.9 29.4 30.3 10.9 33.0 6.4 54.5 48.8 31.2 15.1 47.9 50.1 64.1 46.5
ViT-B/32 AugReg 57 71.7 91.1 72.8 62.4 59.0 18.8 5.9 42.6 81.8 89.8 67.5 16.3 38.8 96.3 27.1 32.8 12.4 33.9 6.4 52.8 56.8 35.9 16.4 51.0 50.1 65.0 48.3
ViT-B/16 AugReg 72 77.1 92.8 74.7 68.9 61.9 20.6 8.3 41.5 85.7 91.2 73.8 21.7 38.3 97.0 26.2 36.4 15.1 41.8 7.1 52.4 56.8 38.3 12.1 51.0 50.5 71.2 50.5
ViT-L/16 AugReg 97 77.5 93.5 79.1 67.6 62.9 19.5 8.3 44.8 84.4 93.1 71.5 18.9 34.2 98.0 29.6 38.9 11.7 22.9 7.7 50.9 60.3 41.6 14.8 51.5 48.2 73.9 50.2
ViT-H/14 SWAG 135 89.2 91.5 72.1 68.2 64.0 36.9 10.4 43.9 88.2 92.1 75.8 7.1 41.7 97.4 29.2 49.6 10.7 34.6 15.0 50.9 62.6 46.4 13.2 52.3 49.7 76.1 52.6

CiT-multi-meta
ViT-B/16 MoCo-v3 31 68.1 84.3 62.0 63.7 56.9 65.7 16.0 40.3 90.0 87.8 61.1 6.8 26.6 92.1 27.6 35.9 18.0 38.6 7.2 50.9 56.0 35.2 17.2 46.0 49.7 65.8 48.8
ViT-B/32 AugReg 32 75.2 90.0 72.2 70.9 60.2 43.9 11.8 42.8 86.6 90.2 74.6 29.2 21.6 93.0 31.7 33.3 13.5 44.7 6.9 51.1 61.7 38.7 14.9 49.9 50.1 66.2 51.0
ViT-B/16 AugReg 51 80.2 91.5 74.4 75.1 62.3 53.7 15.5 40.1 87.2 90.8 76.3 12.3 31.2 92.4 28.1 38.3 13.2 18.6 7.8 60.5 66.0 42.5 14.0 50.3 50.0 71.7 51.7
ViT-L/16 AugReg 61 81.6 92.7 79.2 72.3 63.8 56.9 15.7 42.6 88.5 92.9 73.9 22.6 33.3 94.1 30.9 38.4 16.9 27.7 8.7 56.7 68.4 45.5 16.4 50.0 48.3 74.8 53.6
ViT-H/14 SWAG 54 92.1 91.0 71.8 71.7 66.3 77.4 18.7 51.3 93.8 92.2 81.5 14.9 39.6 97.5 39.4 50.0 15.0 19.1 17.8 50.9 71.8 52.4 14.7 51.7 51.1 76.5 56.5

Table 13: CiT trained on LAION400M and evaluated on 26 CLIP benchmarks: We vary metadata from IN-1K (CiT-1K-meta), IN-
21K (CiT-21K-meta) and combined class names from 26 benchmarks (CiT-multi.-meta). We also list results from CLIP on WIT400M
and OpenCLIP trained on LAION400M. *: from https://github.com/LAION-AI/CLIP_benchmark, with some results using
VTAB benchmark evaluation/prompts.

https://github.com/LAION-AI/CLIP_benchmark
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CLIP (WIT400M) [21]
ViT-B/32 scratch 458 84.4 91.3 65.1 37.8 63.2 59.4 21.2 44.5 87.0 87.9 66.7 51.9 47.3 97.2 49.4 60.3 32.2 39.4 17.8 58.4 64.5 47.8 24.8 57.6 59.6 63.2 56.9
ViT-B/16 scratch 981 89.2 91.6 68.7 39.1 65.2 65.6 27.1 46.0 88.9 89.3 70.4 56.0 52.7 98.2 54.1 65.5 43.3 44.0 23.3 48.1 69.8 52.4 23.4 61.7 59.8 68.6 60.1
ViT-L/14 scratch 6803 92.9 96.2 77.9 48.3 67.7 77.3 36.1 55.3 93.5 92.6 78.7 87.2 57.5 99.3 59.9 71.6 50.3 23.1 32.7 58.8 76.2 60.3 24.3 63.3 64.0 75.3 66.2
CiT-1K-meta
ViT-B/16 MoCo-v3 39 29.0 86.0 56.5 17.6 41.3 12.4 5.8 25.7 83.8 77.0 10.6 10.8 24.9 95.1 22.3 20.8 6.8 35.6 4.2 50.8 27.7 20.5 17.2 48.9 50.1 68.4 36.5
ViT-B/32 AugReg 69 42.8 92.2 70.5 22.1 49.0 11.4 5.5 27.0 83.8 81.1 16.5 8.2 32.5 94.3 29.4 22.2 8.5 39.1 4.9 51.3 37.6 26.7 16.4 48.0 50.1 67.8 40.0
ViT-B/16 AugReg 72 43.9 92.1 73.4 20.4 50.0 10.9 4.5 31.3 84.6 83.0 18.8 7.1 21.5 96.2 23.3 22.4 11.2 29.4 5.2 52.3 41.9 29.4 17.0 50.6 50.1 74.9 40.2
ViT-L/16 AugReg 105 47.8 95.4 76.0 18.5 49.4 11.4 5.6 30.9 84.7 83.7 22.4 6.4 25.6 96.8 24.7 29.7 8.9 36.3 5.3 50.9 45.9 31.0 16.3 46.5 50.1 77.5 41.4
ViT-H/14 SWAG 43 57.2 93.2 68.5 19.8 47.2 25.6 5.9 32.4 81.3 82.5 25.3 8.2 28.8 97.4 17.6 42.2 8.1 29.2 10.3 50.9 53.7 38.8 14.5 48.0 53.2 77.1 43.0

CiT-21K-meta
ViT-B/16 MoCo-v3 134 57.1 87.1 60.3 57.1 54.0 10.5 6.0 37.0 84.6 82.8 59.9 9.8 26.8 96.8 31.8 30.8 8.3 41.2 7.4 59.9 37.9 25.9 20.8 48.2 50.1 62.8 44.4
ViT-B/32 AugReg 148 64.4 93.2 71.7 49.5 56.8 10.8 5.7 35.4 76.2 85.8 60.9 9.5 29.1 95.4 27.1 25.2 9.3 39.8 7.7 51.3 45.8 32.1 14.1 51.3 50.1 62.2 44.6
ViT-B/16 AugReg 161 70.0 93.6 75.9 58.2 59.9 11.7 5.2 37.7 74.9 89.3 61.7 9.8 32.6 97.9 29.5 29.4 11.2 40.9 9.0 51.1 49.6 36.1 13.6 48.9 50.1 69.4 46.8
ViT-L/16 AugReg 228 71.7 96.0 78.7 56.7 62.4 12.2 5.9 37.4 77.0 90.6 65.3 14.6 37.6 98.3 27.8 34.0 8.5 34.0 9.4 44.2 54.7 39.0 15.5 47.9 50.1 72.6 47.8
ViT-H/14 SWAG 310 80.4 93.2 72.0 58.4 60.8 25.6 5.5 36.0 78.4 89.1 70.6 7.8 34.7 98.9 28.4 41.7 10.8 29.9 14.0 50.8 57.5 41.9 12.4 45.8 52.6 75.5 49.0

CiT-multi-meta
ViT-B/16 MoCo-v3 91 70.4 88.8 61.1 60.1 59.0 63.2 24.5 38.4 90.2 85.5 66.5 9.8 32.0 96.6 35.4 39.0 9.5 35.8 10.2 50.3 48.7 33.4 17.1 43.8 50.1 66.1 49.4
ViT-B/32 AugReg 62 72.7 92.9 71.0 51.0 58.9 30.9 10.9 36.3 86.6 87.4 67.5 9.8 36.3 94.5 29.1 29.4 8.5 33.4 8.6 54.9 51.6 36.3 14.8 49.2 50.0 64.4 47.6
ViT-B/16 AugReg 62 81.3 94.0 76.6 65.2 62.2 44.1 17.9 41.3 90.0 90.6 74.9 9.8 35.3 97.5 34.6 36.5 13.1 34.4 10.4 56.8 57.6 41.3 13.4 50.6 50.1 71.9 52.0
ViT-L/16 AugReg 62 82.4 96.1 79.2 62.4 64.1 44.5 15.8 41.2 89.3 91.3 74.9 9.8 34.7 98.2 27.9 38.7 8.9 33.4 11.1 55.9 61.3 44.0 11.9 48.9 50.1 74.4 51.9
ViT-H/14 SWAG 203 93.7 93.5 73.2 75.7 65.1 79.5 25.2 40.3 95.8 92.1 85.0 11.6 38.9 98.3 30.5 51.9 10.1 28.7 21.8 52.5 68.9 52.9 15.9 45.7 50.1 77.6 56.7

Table 14: CiT trained on Raw Image-Text Crawl and evaluated on 26 CLIP benchmarks: We vary metadata from IN-1K (CiT-1K-meta),
IN-21K (CiT-21K-meta) and combined class names from 26 benchmarks (CiT-multi.-meta). The budget b = 60000 for IN-21K and
b = 30000 for combined class names. We also list results from CLIP on WIT400M.
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# of classes 101 10 100 200 397 196 100 47 37 102 102 10 7 10 10 45 43 4 211 2 101 700 8 2 2 1000
t > 0.55
# pairs per class (k) 5.32 16.64 9.27 3.28 5.63 0.81 4.35 3.12 3.66 6.71 6.51 11.9 5.43 18.21 8.59 10.57 2.22 23.63 2.33 0.53 4.28 3.9 20.96 5.48 0.66 3.69
total keep rates (%) 3.66 1.13 6.31 4.46 15.2 1.08 2.96 0.999 0.922 4.66 4.52 0.81 0.259 1.24 0.585 0.324 0.65 0.644 3.34 0.007 2.95 18.6 1.14 0.075 0.009 25.1

Table 15: Statistics of YFCC15M (title and description) coverage on 26 tasks of CLIP evaluation: Low coverage could explain the root
cause of the poor performance of zero-shot transfer (e.g. Cars, PCAM, etc.).

expect better accuracy for longer training.

A.2.4 Early Detection of Task Coverage

One extra benefit of curation is being able to detect the task
coverage of the training data. Although existing scaled pre-
trainings have huge success, the coverage of pre-training
data distribution for downstream tasks is largely unknown.
We discuss the coverage for CiT on YFCC15M below.

Task Coverage. We obtain the statistics of curated data (of-
fline in Table 1 (a) of the main paper ) for the 26 tasks and
show it in Table 15. We consider a sample with a maximum
cosine similarity for one class as one sample belonging to
that class/task. We note that this is a hard-matching which
does not necessarily cover the full class to sample corre-
lation. Breaking down YFCC15M for different tasks par-
tially explains the low performance on some. For example,
SST2 (a binary classification task) has low image-text pair
matches, explaining the low performance (close to random)
for all models.

A.3. Difference in Learning Paradigm

CiT incorporates data curation into its training process,
thereby altering the learning paradigm from existing pre-
training models that rely on human-driven offline filtering.
A comparison of CiT with other approaches is presented
in Table 16. The main difference between CiT and other
approaches is that it accepts raw image-text pairs. Unlike
CLIP/LiT, which require human-filtered datasets due to per-
formance constraints, CiT can curate data during training.
Although CLIP uses search queries, which is close to CiT’s
metadata, it is done offline on a larger scale.

Image-text pairs used in CLIP/LiT/CiT are much nois-
ier than human-annotated data, such as an image-label pair
commonly used in supervised learning, due to the nature of
language that may or may not describe the image (e.g., file
names). The goal of active learning is to selectively obtain
labels for images from a fixed dataset and semi-supervised
learning aims to create pseudo-labels for images. Therefore,
established supervised/semi-supervised learning techniques
may also select poor (noisy) examples (e.g., via active learn-
ing), while CiT tries to select quality pairs.

In Table 17, we apply some semi-supervised/deep active



CiT CLIP [21] LiT [38] DAL
Paradigm curation&pre-training pre-training pre-training sup. learning/fine-tuning
Data Type raw(online) img-txt pairs filtered img-txt pairs filtered img-txt pairs human annotated images
Offline Filtering 7 X X X
Initialization uni-modal from scratch uni-modal from scratch/uni-modal

Table 16: Comparison of CiT with existing approaches on learning paradigm.

Strategy IN-1K Acc.
CiT [5] 61.4
Self-training 26.2
Active Learning
Entropy Sampling 19.5
Least Confidence Sampling 23.0
Margin Sampling 50.5
BALD 53.7

Table 17: Comparison of CiT with different training paradigms,
all using MoCo-v3 backbones, on YFCC15M.

learning (DAL) strategies4 on YFCC15M, using the text
as class names. The results show that these strategies are
sub-optimal and CiT is much more effective in handling the
noisy image-text data.

4
https://github.com/ej0cl6/

deep-active-learning
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