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In the appendix, we present 1) additional results of un-

seen identities and low-view inputs in Section A, which

demonstrate that the pre-trained template serves as a good

initialization and enables our method to adapt to new iden-

tities not available in the training dataset; 2) detailed results

of our method and compare them with NeuS, HF-NeuS, and

VolSDF on the PR-Senior and PR-Young datasets under a

10-view setting in Section B; and 3) an application on color

transfer in Figure A4 to demonstrate the flexibility and po-

tential of our geometry decomposition.

A. Experimental Results

In this section, we present additional results of unseen

identities and results of sparse views.

A.1. Unseen Identities

Our method has the ability to adapt to new individuals as

the pre-trained template serves as a good initialization. To

verify this, we consider 3 new identities (Models 552, 555

and 598) and each identity is associated with only 5 views.

We adopted the pre-trained template, i.e., the one trained

on 30 identities the PR-Senior and PR-Young datasets with

10 views for each identity, to learn the fine details for each

identity in Stage 2. We observed that our method also pro-

duced plausible results for the unseen identities as shown in

Table A2. This demonstrates that the pre-trained template

can adapt to new identities.

A.2. Small Dataset

We also conducted another experiment using the 3 un-

seen identities as a small dataset. In the second experiment,

we trained a new template using only the 15 images of the

3 new identities in Stage 1 and then used the template to

learn the fine details for each identity in Stage 2. Without
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a surprise, the geometry of the newly trained template is

worse than that of the pre-trained template due to signifi-

cantly fewer views involved in Stage 1 training. Still, our

method produced a fairly good result and none of the other

methods, VolSDF, NeuS and HF-NeuS, were able to recon-

struct satisfactory geometry with only 5 views as input as

illustrated in Figure A2 and Figure A3.

A.3. Sparse Views

This section provides further results on sparse views as

shown in Figure A1. Moreover, Table A2 also demonstrates

that our approach surpasses other methods in terms of re-

constructing geometry under sparse view conditions.

B. Analysis

We provide a thorough evaluation of our method and the

state-of-the-art methods NeuS, VolSDF, and HF-NeuS on

the PR-Senior and PR-Young datasets in this supplementary

material. Our analysis includes a discussion of the strengths

and weaknesses of each method and a comparison of their

performance under various settings. It is worth noting that

when VolSDF or HF-NeuS fails to reconstruct the geometry

for certain models, we exclude them from the calculation

of Chamfer distances for their methods. However, we use

all models when calculating the Chamfer distances for our

method and NeuS, both of which can reconstruct geometry

for all 30 identities.

B.1. Comparison to VolSDF

In the 10-view setting, VolSDF generates erroneous ge-

ometry for Models 377, 383, and 401 due to the insufficient

number of views. As illustrated in Figure A5, VolSDF only

learns a partial geometry for the training views, resulting in

poor novel view synthesis results.

Although the reconstruction quality improves with 15

views, VolSDF still fails to reconstruct Models 558 and 608.

https://github.com/xubaixinxbx/3dheads


Symbol Meaning

Ii the input images with camera parameters

fgeo the Geometry Network

ftem the Template Network

fdef the Deformation Network

fren the Rendering Network

fdis the Displacement Network

zs, zc ∈ R
128 identity-dependent latent codes for shape and color

Fdef ∈ R
192 identity-dependent feature associated with non-rigid deformation

Ftem ∈ R
64 identity-independent feature associated with the template head

Fdis ∈ R
64 ID-dep. geometry feature associated with displacement

Fall ∈ R
320 the overall feature fed into the Rendering Network in Stage 2, which is the concatenation of Fdef, Ftem, and Fdis

x ∈ R
3 a query point in the observation space

d ∈ R
3 an offset vector indicating the deformation from an individual to the template

x+ d ∈ R
3 a query point in the template space

s ∈ R signed distance

nb,nf ∈ R
3 normal vectors of the base and final surfaces

δ ∈ R an implicit displacement

c ∈ R
3 radiance

C ∈ R
3 rgb color

Table A1. Notation Table.

Model
NeuS HF-NeuS VolSDF Ours(Template on the 3 ids) Ours(Template on 30 ids)

CD (10−4) PSNRt PSNRn CD (10−4) PSNRt PSNRn CD (10−4) PSNRt PSNRn CD (10−4) PSNRt PSNRn CD (10−4) PSNRt PSNRn

552 3.769 35.22 21.64 N.A. 35.40 13.36 8.192 33.62 23.13 1.815 33.58 26.51 1.197 34.92 25.88

555 3.614 35.37 18.97 N.A. 35.65 12.19 243.4 33.45 11.80 1.254 33.30 24.14 1.071 35.04 23.39

598 16.25 36.39 21.89 N.A. 36.30 12.81 23.76 35.63 20.27 1.056 35.70 27.02 1.020 35.50 27.39

Table A2. Performance on three unseen identities under 5 views. N.A. indicates no results successfully reconstructed.

It is possible that VolSDF was successful on these two mod-

els with 10 views, but failed on them with 15 views because

we chose the input views randomly from the original PR

dataset in order to test the robustness of various approaches.

The redundant information in the given views may not be

helpful for improving the reconstruction quality of VolSDF.

In the 20-view setting, VolSDF still failed on Model 571.

We noticed that this model is affected by the failure recon-

struction of the neck shown in Figure A9, which leads to

inaccurate cropping of the face.

B.2. Comparison to NeuS & HFNeuS

We found that NeuS was successful in reconstructing all

3D human heads in our experiments. However, due to the

lack of modeling high-frequency signals, it cannot recover

fine details, resulting in Chamfer distances in their results

that are 1 times larger than ours. In contrast, our method

can reconstruct fine details such as wrinkles, scarves, and

hair, thanks to the additional degree of freedom provided

by the displacement field.

HF-NeuS extends NeuS by learning a displacement

field for representing high-frequency details. It typically

achieves the best performance with a sufficient number of

views. However, as the number of views decreases, the 3D

reconstruction quality often degrades significantly. The rea-

son is that HF-NeuS learns both the base surface and the

high-frequency details at the same time. Such a learning

process is unstable under a low-view setting. With only 10

views, HF-NeuS failed to reconstruct geometry for 19 out

of 30 subjects, while with 15 views, it failed on Models 376,

377, 383, 396, 435, 469, 487, 491, 548, and 566. Even with

20 views, HF-NeuS still failed to reconstruct six models,

which are 487, 548, 608, 399, 413, and 397. These results

confirm that learning high-frequency details from low-view

inputs is a challenging task.

In contrast, our method tackles this challenge by adopt-

ing a geometry-decomposition and a two-stage training

framework. The template is trained on multiple persons

with randomly chosen views. Although the number of

views for each person is still low, the randomly selected

views complement each other and provide a complete head.

This template provides a good initialization for training the

displacement in Stage 2.

Comparing to NeuS and HF-NeuS, our method performs

consistently well in terms of geometry measure under the

same low-view settings, thanks to the use of a pre-trained

template and the displacement field.

While both NeuS and HF-NeuS produce high-quality

RGB images for training views, which are 0.5-1.5 dB higher

than ours, their novel view synthesis results are consistently
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Figure A1. Results for Model 383 with only 5 views as input. The template human head was trained using 5 randomly selected views for

all 30 identities of the PR-Senior and PR-Young datasets. The images of Model 383 for Stage 1 training and Stage 2 training are the same,

therefore no additional views were provided.

worse than ours with a 2-4 dB lower score. This is attributed

to the fact that these methods have less accurate geometry

reconstruction and do not incorporate multiple views from

various identities.

B.3. Summary

Our approach is specifically designed to enhance the per-

formance of 3D reconstruction in low-view settings and

complements the existing methods, such as VolSDF, NeuS

and HF-NeuS, by utilizing a pre-trained template and a two-

stage training framework. We do not intend to replace these

methods, but rather to improve their performance in such

scenarios.
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Figure A2. Training view results for 3 unseen identities (552, 555, 598) with only 5 views.
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Figure A3. Novel view results for 3 unseen identities (552, 555, 598) with only 5 views.



Reference identity Source identity Source identity normal map Color transfer result
Figure A4. Our approach of decomposing geometry and appearance enables us to transfer the color appearance from one model to another

while keeping the geometry unchanged. In this figure, we provide two examples of transferring skin colors from a reference identity to

a source identity. All models are trained under 20 views. Notably, our method can preserve small geometric features, such as speckles,

which are encoded in the SDF. This is in contrast to existing image-based color transfer algorithms, which cannot differentiate between

geometric features and skin colors, often transferring them together.
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Figure A5. Comparison of various approaches under a 10-view setting (from Model 371 to Model 389). For each model, we show the

results on one training view (left) and one novel view (right).
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Figure A6. Comparison of various approaches under a 10-view setting (from Model 395 to Model 413). For each model, we show the

results on one training view (left) and one novel view (right).
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Figure A7. Comparison of various approaches under a 10-view setting (from Model 416 to Model 451). For each model, we show the

results on one training view (left) and one novel view (right).
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Figure A8. Comparison of various approaches under a 10-view setting (from Model 454 to Model 548). For each model, we show the

results on one training view (left) and one novel view (right).



5
5

8
5

6
6

5
7

1
6

0
8

6
1

9
6

3
5

GT NeuS HF-NeuS VolSDF Ours GT NeuS HF-NeuS VolSDF Ours
Figure A9. Comparison of various approaches under a 10-view setting (from Model 558 to Model 635). For each model, we show the

results on one training view (left) and one novel view (right).


