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A. Proof of Theorem
Theorem 1. Compared to the typical case of normally-
distributed weights, uniformly distributed weight tensors
have improved tolerance to quantization and lower sensitiv-
ity to quantizer implementation. [6]

Proof: Let Eq(1) be a uniform b-bit quantizer with quanti-
zation step size s that maps a continuous value w ∈ R into
a discrete representation

ŵ = clip
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We consider the expected mean-squared error (MSE) as a
local distortion measure that we aim to minimize, expressed
as follows:

MSE(w, s) = E
[
(w − ŵ)

2
]

(2)

Assuming an optimal quantization step size s̃ and quantizer
for a given distribution w, we quantify the quantization sen-
sitivity Γ(w, ε) as the increase in the MSE(w, s), resulting
from small changes in the quantization step size around s̃.
More specifically, for a given ε ≥ 0 and a quantization step
size s in proximity to s̃ (i.e.,|s− s̃| = ε ), we compute the
following difference:

Γ(w, ε) = |MSE(w, s)−MSE(w, s̃)| (3)

Let wu and wn be continuous random variables with a uni-
form distributed and normal distributions. As demonstrated
in the proof of RobustQuant [6], assuming a second-order
Taylor approximation, the quantization sensitivity can be
expressed as follows:

Γ (wu, ε) ≈
∣∣∣∣∂2 MSE (wu, s = s̃)
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Γ (wn, ε) ≈
∣∣∣∣∂2 MSE (wn, s = s̃)
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The aforementioned conclusion rigorously establishes the
theorem, as we have demonstrated that:

Γ (wu, ε) < Γ (wn, ε) (6)

B. Pseudocode of EQ-Net Framework
The overall flow of the EQ-Net framework is illustrated

in Algorithm 1. The supernet training process is described
in detail in lines 1 to 8, while the mixed-precision search
process is presented in lines 11 to 18.

C. The Efficiency of EQ-Net Framework.
DNNs consume vast amounts of energy, resulting in a

significant carbon footprint. Quantization has emerged as
a promising technique to enhance the energy efficiency of
neural networks, benefiting both commodity GPUs and spe-
cialized accelerators. The EQ-Net framework takes this
approach further by generating a single model that can be
deployed across a range of inference chips, eliminating the
need for retraining prior to deployment and reducing as-
sociated CO2 emissions. As shown in Table 1, EQ-Net
outperforms both uniform and mixed-precision quantization
methods when handling multiple deployment scenarios, as
its cost is constant, while LSQ/HAQ/EdMIPS scales linearly
with the number of deployment scenarios (N). Furthermore,
EQ-Net can adapt to a broader range of quantization scenar-
ios compared to the B-OFA method.

D. Comparison with SOTA Methods Details
Figure 1, 2, 3 present a comparison of our proposed EQ-

Net utilizing the BGS-OFA method with other approaches
across different networks. Approaches with the same quan-
tization method are grouped together and plotted as sepa-
rate curves. As ResNet18 shares the same architecture as
ResNet50 [4], we only present results for ResNet18 here.
It is worth noting that the majority of mainstream methods
employ per-tensor and symmetric quantization, followed by
per-tensor and asymmetric, while the per-channel approach
is almost absent.

In the case of per-tensor and symmetric quantization,
our EQ-Net achieves the optimal performance under three
different networks. Specifically, in ResNet18, our method
outperforms RobustQuant [6] and CoQuant [7] by over 10%
for bit-widths of 2 and 3, respectively. As the quantization
bit-width increases, the performance gap between methods
narrows, but our method still outperforms RobustQuant by



Algorithm 1 EQ-Net: Elastic Quantization Neural Networks

Require: Training epochs E, Iterations each epoch I , Population Size: S, Number of Mutation: NM , Number of Crossover:
NC , Max Number of Exploring Iterations: N , Gene: Gl, Chromosome: X, Population O, Elite E.

Ensure: Supernet EQNet, Each layer bit-width for different quantization configurations of the model Xbest.
1: for e = 0 : E do ▷ Training EQ-Net
2: for i = 0 : I do
3: Calculate kurtosis and skewness to constrain the weight distribution; ▷ Eq.(6)
4: Forward propagation and loss calculation with {LH , LR, LL}; ▷ Eq.(8)
5: Compute additional regularization terms and back propagate;
6: end for
7: end for
8: Get EQNet;
9: Monte Carlo Sampling and Tuning BN to Create Dataset <Config, Accuracy>;

10: Training Conditional Quantization-Aware Accuracy Predictor for Quantization Model;
11: O0=Random(S,τBw,τBa,τGw,τSw,τSa) ▷ Genetic Algorithm for Mixed-Precision Search
12: for n = 0 : N do
13: {On, acc} = CQAP(On) ; ▷ Eq.(9)
14: {En, acc} = TopK({O0,O1, · · ·On; acc});
15: Omutation = Mutation(En, NM , τBw, τBa);
16: Ocrossover = Crossover(En, NC , τBw, τBa);
17: On+1 = (Omutation,Ocrossover);
18: end for
19: Xbest = Top1({EN , acc}) −→ Accbest = EQNet(Xbest)

Table 1: Comparison with state-of-the-art quantization method for computation cost on NVIDIA 3090 GPUs. We use N to denote the number
of up-coming deployment scenarios. EQ-Net search cost and training cost both stay constant as the number of deployment scenarios grows.

Network Benchmark
Uniform Mixed Granularity Symmetry Search cost Training cost Total

Quantization Quantization Quantization Quantization (GPU hours) (GPU hours) (GPU hours)

ResNet18

LSQ [3] ✓ ✕ ✕ ✕ —— 60N 60N
EdMIPS [2] ✕ ✓ ✕ ✕ 10N 60N 70N

AnyPrecision [11] ✓ ✕ ✕ ✕ 76 76
CoQuant [7] ✓ ✕ ✕ ✕ —— —— ——

RobustQuant [6] ✓ ✕ ✕ ✕ —— 214 214
MultiQuant [10] ✓ ✓ ✕ ✕ 10 134 144
EQ-Net(Ours) ✓ ✓ ✓ ✓ 15 180 195

ResNet50

LSQ [3] ✓ ✕ ✕ ✕ —— 240N 240N
HAQ [9] ✕ ✓ ✕ ✕ 95N 192N 287N

MultiQuant [10] ✓ ✓ ✕ ✕ 48 600 648
EQ-Net(Ours) ✓ ✓ ✓ ✓ 50 672 722

MobileNetV2

LSQ [3] ✓ ✕ ✕ ✕ —— 120N 120N
HAQ [9] ✕ ✓ ✕ ✕ 48N 96N 144N

MultiQuant [10] ✓ ✓ ✕ ✕ 24 310 334
EQ-Net(Ours) ✓ ✓ ✓ ✓ 24 360 384

EfficientNetB0
LSQ [3] ✓ ✕ ✕ ✕ —— 130N 130N

LSQ+ [1] ✕ ✓ ✕ ✕ —— 130N 130N
EQ-Net(Ours) ✓ ✓ ✓ ✓ 25 410 435

0.6% at 6-bit and both CoQuant and AnyPrecision [11] by
about 2.7% at 8-bit. Similar performance advantages can
be observed for MobileNetV2 [5], where our method is
nearly 40% better than RobustQuant for 3-bit quantization,
with the performance gap shrinking to 2.4% at 6-bit. In
EfficientNetB0 [8], our EQ-Net outperforms LSQ [3] by
0.6% and 2.2% for 3-bit and 4-bit quantization, respectively.

When compared with the per-tensor and asymmetry quan-
tization methods, in ResNet18, our method is 0.6% below
MultiQuant [10] at 2-bit and exceeds it by more than 0.4%
at all other bit-widths, especially at 3 bit-width where our
method is 1.8% higher. In MobileNetV2, our approach has
the same performance as MultiQuant at 3-bit, and is about
0.8% higher in other bit-widths. We surpass LSQ+ [1] by
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Figure 1: Comparison with other methods for different quantization configuration in ResNet18.
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Figure 2: Comparison with other methods for different quantization configuration in MobileNetV2.
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Figure 3: Comparison with other methods for different quantization configuration in EfficientNetB0.
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Figure 4: Comparison of step size range for different bit-width in ResNet18.
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Figure 5: Comparison of step size range for different bit-width in MobileNetV2.
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Figure 6: Comparison of step size range for different bit-width in EfficientNetB0.

2.0%/1.3% in EfficientNetB0 at 3/4 bit-widths, respectively.
Since there are relatively few methods using per-channel

and symmetry quantization methods, we only plot the curves
of EQ-Net using this method under three networks.

E. Quantization Step Size Range
We analyzed the distribution range of step size in different

networks when using per-channel quantization. Figure 4, 5, 6
shows the box plots of step size for various layers of three

kinds of networks respectively. We separately selection
the 1×1 and 3×3 convolutions from the front, middle and
rear segments of EfficientNetB0 [8], MobileNetV2 [5] and
ResNet18 [4] models, specifically, we also select the 5×5
convolution in EfficientNetB0.

In the same model, the step size gets smaller as the quan-
tization bit-width increases, and accordingly its fluctuation
range narrower. For example, in the 44th convolutional layer
of MobileNetV2, when the quantization bit-width is 2, the
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Figure 7: Sensitivity analysis of λ in ResNet20 on CIFAR10

step size fluctuation range is between 0.02 and 0.20, but the
range becomes narrower to 0.00 to 0.07 as the quantization
bit-width increases to 8.

At the same bit-width of different networks, ResNet18 ex-
hibits the narrowest range of step size fluctuation, followed
by MobileNetV2, while EfficientNetB0 has the largest range
of variation. When the bit width is set to 2, the step size of
different layers in ResNet18 is majority distributed between
0.24 and 0.38, in MobileNetV2 the distribution is widened
to between 0.00 and 0.35, while in EfficientNetB0 the distri-
bution is further stretched to between 0.00 and 0.72. Such
phenomenon occurs due to the use of separable convolution
in the latter two networks. Notably, as seen in Figure 5, the
1×1 convolution in MobileNetV2 has substantially narrower
step size fluctuation range than its 3×3 convolution.

F. Sensitivity Analysis of λ

Figure 7 shows the convergence curves of EQ-Net with
different values of λ in Eq.(7) at 2-4-8 bit-widths. λ in
Eq.(7) represents the ratio of KL divergence between the
subnetwork and the supernet, which is used to distill the
knowledge from the supernet to the subnetwork. As shown
in the figure, when λ = 0.9, the performance of EQ-Net
is optimal at 2 bit-width, but the performance is worse at 8
bit-width. Conversely, when lambda is 0.1, the performance
is optimal at 8 bit-width but worse at 2 bit-width. Therefore,
in order to achieve a well-balanced performance at different
bit-widths, our λ takes the value of 0.5.
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