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Figure 1: Semantic distribution of actions of Ego-HOI test sets.
We use BERT [9] embeddings to visualize the classes.

1. Visualization

For a more comprehensive analysis, we present more vi-
sualizations of video properties:
Video Property on The Val/Test Set. We present visu-
alizations of the video properties on the test or valid sets,
including action semantics (Figure 1), camera motion (Fig-
ure 2), hand pose (Figure 3), blurriness (Figure 4), hand box
(Figure 5) and object box (Figure 6). Our proposed dataset
One4All-T is more comprehensive on these properties. We
also show the semantic similarity matrix of the test sets in
Figure 7.

Data Addition and Removal in All-for-one Setting. We
visualize the samples added or removed during task-specific
model enhancement. The data points are represented ac-
cording to video properties and we show the PCA visualiza-
tions of two key properties: hand locations (Figure 8) and
object locations (9). It can be observed that the removed
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Figure 2: Camera motion polar histogram of Ego-HOI test sets.
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Figure 3: Hand pose. We show the high-density contours of the
heatmaps of different hand keypoints on different test sets.
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Figure 4: Blurriness (test sets). µ: average blurriness value.

data usually locate in the dense area of whole datasets. Be-
sides, the additional samples are not only located in the
dense area (since our ablation study shows that similar data
brings more model improvement) but also supplement more
diverse samples located in the sparse regions.
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Figure 5: Hand location heatmaps of Ego- HOI datasets (test set).
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Figure 6: Object location heatmaps of Ego- HOI datasets (test set).
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Figure 7: The unified ego-property similarity between test sets.

2. Details of Ego4D-AR

Ego4D-AR (Action Recognition) is derived from the
data and annotations of Ego4D [3]. We use the annotations
from the long-term action anticipation task from Ego4D,
which contains start and end frame indices and the corre-
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Figure 8: The hand location representations of EGTEA-Gaze+ and
the removed (left) or added (right) samples. We use PCA to reduce
dimensionality.
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Figure 9: The object location representations of EGTEA-Gaze+
and the removed (left) or added (right) samples. We use PCA to
reduce dimensionality.

sponding human action. We adopt the video clips from the
hand-object interaction task, whose lengths are 8 seconds.
A total of 41,085 clips are used for training and 28,348 for
validation. The video clips that are exactly within long-term
action segments are assigned with action labels, and the rest
are discarded.

After the filtering and label assignment, we obtain the
single-label action recognition dataset Ego4D-AR, which
has 22,081 training samples and 14,530 validation samples.
Ego4D-AR has 77 action classes, where 66 are in the train
set and 58 are in the validation set. There are 11 zero-shot
classes in the validation set due to the filtering process, re-
sulting in the relatively low performance on One-for-all task
(Table 3 in the main text).

3. Implementation Details

3.1. One4All-P and One4All-T

We merge the action classes of EPIC KITCHENS 100,
EGTEA-Gaze+, Ego4D-AR, and Something-Else and have
an active pool with nearly 500 actions. Then the classes



with the same semantics are merged. The remaining classes
for One4All-P and One4All-T are 394 and 204 respec-
tively (the total number of classes are 401 due to some
zero-shot classes). Then we use our data selection al-
gorithm derived based on the analysis of the video prop-
erties presented in the main paper to build our One4All
datasets. We respectively sample 20 and 5 instances per
class for One4All-P and One4All-T as the initial dataset.
Then we select samples according to the unified video prop-
erty with weight 5:10:8:8:10:5 (i.e., action semantics: hand
box: hand pose: object box: camera motion: blurriness).
The KDE update frequency k is 2,000/2,500/5,000 for
One4All-P-20K/30K/50K and 300/500/1,000 for One4All-
T-3K/5K/10K. Note that the larger datasets are built based
on the smaller ones (e.g. we add 20 K samples to One4All-
P-30K to build One4All-P-50K).

3.2. Model and Training Details

In the one-for-all training stage, the model is trained with
an Adam optimizer with a warmup learning rate of 2.0e-5
for 5 epochs and a cosine learning rate from 1.0e-4 to 1.0e-6
for 90 epochs. In the all-for-one training stage, the model is
finetuned with a learning rate of 5.0e-5.

3.3. More Ablation Study

Loss weight For loss weights λ1, λ2, We select the param-
eter by cross-validation and the ablation study is given in
Table 1.

λ1 λ2 EGTEA
0.2 (default) 0.1 (default) 70.8
0.5 0.1 70.8
0.1 0.1 70.6
0.2 0.3 70.6
0.2 0.05 70.5

Table 1: Ablation study of λ1, λ2.

Dataset Components Given that Epic-100 and Sth-Else are
the main constituents in our pretraining set, we conducted
an experiment with pretraining on only these two datasets.
The accuracy on EPIC-100/Sth-Else are 54.1%/44.5%.
Backbone Model on Epic-100 For a fair comparison to
state-of-the-art model on Epic-100, we add an experiment
using MeMViT as backbone in our model and achieve
70.7% accuracy, which is achives SOTA on the benchmark.

4. Further Discussion
Currently, we managed to enhance the balancedness of

video properties of Ego-HOI datasets with our selection al-
gorithm. But due to the limitation of data diversity and
the trade-off between multiple video properties, we can not
achieve ideal balancedness on all properties, as shown in

Figure 5, 3, 6, 2, and 4. In the future, we will extend our
video property-based data selection algorithm to new data
collection and try to use the massive noisy, third-person, or
weakly supervised video data. We will also enhance our
baseline and leverage the unique video properties of the
Ego-HOI task.

5. Licences
The data we use are from the following datasets and are

all publicly available and only for research use. Our data
pre-processing and selection will be made public.

• EPIC KITCHENS 100 [1]: Link, Creative Commons
Attribution-NonCommercial 4.0 International License

• EGTEA Gaze+ [4]: Link

• Ego4D [3]: Link

• Something Something [2]: Link

• Something Else [5]: Link

And our code is based on the following code repositories.
Our code will also be made public.

• PySlowFast: Link, Apache-2.0 License

• OpenMMPose: Link, Apache-2.0 License

• CLIP: Link, MIT license

• ActionCLIP: Link, MIT License
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