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1. Details about the LWLR Module

Given a globally aligned depth map Dg and sparse
guided points y, the LWLR module [9] recovers a location-
aware scale-shift map. Concretely, for each 2D coordinate
(u, v), the sampled globally aligned depth d can be fitted to
the ground-truth depth y by minimizing the squared locally
weighted ℓ2 distance, which is re-weighted by a diagonal
weight matrix Wu,v .

min
βu,v

(y −Xβu,v)
TWu,v(y −Xβu,v) + λθ2u,v,

Wu,v = diag(w1, w2, ..., wm), wi =
1√
2π

exp(−dist2i
2b2

),

β̂u,v = (XTWu,vX +A)−1XTWu,vy,

A =

[
λ 0
0 0

]
, D = S ⊙Dg +Θ,

X = [dT,1] ∈ Rm×2, βu,v = [su,v, θu,v]
T ∈ R2×1,

D,S,Dg,Θ ∈ RH×W , d,y ∈ Rm×1,
(1)

where y is the sampled sparse ground-truth metric depth,
d is the sampled globally aligned depth, whose 2D coor-
dinates are the same with those of sparse guided points y.
X is the homogeneous representation of d, m stands for
the number of sampled points. b is the bandwidth of Gaus-
sian kernel, and disti is the Euclidean distance between the
the coordinate (ui, vi) of i-th guided point and target point
(u, v). λ is a l2 regularization hyperparameter used for re-
stricting the solution to be simple. By iterating the target
point (u, v) over the whole image, the scale map S and shift
map Θ can be generated composed of the scale values su,v
and shift values θu,v of each location (u, v). Finally, the
locally recovered metric depth D̂ equals to the shift map
Θ plus the Hadamard product (⊙, known as element-wise
product) of the affine-invariant depth D and the scale map
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Table S1: Efficiency of the photometric constraint. We
simply replace the photometric constraint with spatial con-
straint (“w/ flow”), and supervises the coordinates consis-
tency warped by optical flow [7] and optimized parameters.
Although comparable performance can be achieved, pre-
dicting dense optical flows with a deep network between
every two frames is computationally expensive. Our al-
gorithm can be more efficient while remaining comparable
performance.

Method
Time Depth Pose Reconstruction

Complexity AbsRel↓ δ1 ↑ ATE↓ RPE-T↓ RPE-R↓ C-l1 ↓ F-score↑
Ours O(1) 0.092 0.923 0.096 0.144 0.053 0.099 0.622

w/ flow O(N2) 0.102 0.907 0.095 0.155 0.052 0.085 0.627

S. The operation above can be summarized as below.

S,Θ = fLWLR(D
g,y),

D = S ⊙Dg +Θ.
(2)

Rather than relying on sparse ground-truth metric depth
y, we replace it with {ωi,t · dgi (pt)}Mt=1, which is related
to parameters {ωi,t}Mt=1 and sampled sparse global depth
{dgi (pt)}Mt=1. By ensuring multi-frame consistency, we can
retrieve scale-consistent depth maps.

Ai,Bi = fLWLR(D
g
i , {ωi,t · dgi (pt)}Mt=1),

Di = Ai ⊙Dg
i +Bi.

(3)

2. Efficiency of Photometric Constraint
Furthermore, we also explore the efficiency of the pho-

tometric constraint on the NYU [5] dataset. We supervise
the consistency of coordinates warped by the optical flow
and the optimized parameters, as a replacement for photo-
metric constraint. As shown in Table S1, although compa-
rable performance can the flow-guided constraint achieve,
it relies on predicting dense optical flow between every two
frames with a robust model RAFT [7], which can be time-
consuming due to the recurrent refinement model and the
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Table S2: Keyframe sampling strategy. We sample
keyframes according to the valid regions of the estimated
optical flow. As a result, our algorithm not only consumes
less time but also achieves better performance.

Method
Time Depth Pose Reconstruction

Complexity AbsRel↓ δ1 ↑ ATE↓ RPE-T↓ RPE-R↓ C-l1 ↓ F-score↑
Ours O(1) 0.092 0.923 0.096 0.144 0.053 0.099 0.622

w/ flow keyframe O(N2) 0.103 0.897 0.174 0.262 0.113 0.155 0.565

O(N2) time complexity. In contrast, the photometric con-
straint does not require offline-computed optical flow and
can be more efficient, especially on long-form videos.

3. Keyframe Sampling Strategy

We sample the keyframes with the optical flow com-
puted with RAFT, and compare it with ours on the NYU
dataset. The flow-guided keyframes will be selected if the
valid regions are larger than 30 percent after checking the
forward-backward consistency. As shown in Table S2, our
algorithm is more efficient and even outperforms the flow-
guided keyframe sampling strategy due to the pose-based
long-range keyframe sampling.

4. Analysis of Optimization Objectives

Our optimization objectives are composed of photomet-
ric constraint, geometric constraint, and regularization con-
straint. The photometric constraint Lpc ensures the color
consistency between the reference frame and the warped
source frame. If we directly optimize the per-frame pixel-
wise depth map with the photometric constraint, the super-
vision signal can be too weak to achieve satisfactory perfor-
mance, especially on some low-texture regions. Here weak
means supervising the color consistency instead of precise
coordinate correspondences. However, the weak supervi-
sion becomes an advantage when it is employed with the
geometric constraint and the robust affine-invariant depth
prior. The affine-invariant depth maps can offer reliable in-
herent geometry information and narrow the solution space
together with the geometric constraint. Concretely, the pho-
tometric constraint offers accurate guidance on the rich tex-
ture regions. For some low-texture regions, the photomet-
ric constraint will be small, and the optimization is mainly
guided by the supervision of geometric consistency, which
is also reliable due to the geometric accuracy of affine-
invariant depth.

For the geometric constraint Lgc, it can ensure the multi-
view geometric consistency and will not bring any incorrect
supervision, but the weight should not be too large to pre-
vent from encouraging the whole depth map to be infinitely
large. The weakly normalization supervision on the sparse
guided points Lregu is utilized to avoid extreme point cloud

Table S3: Upper bound analysis. With known GT poses,
our algorithm can achieve better performance. The GT in-
trinsics alone does not improve the reconstruction perfor-
mance, but can achieve slight performance improvement to-
gether with GT poses.

GT intrinsics GT poses
Depth Pose Reconstruction

AbsRel↓ δ1 ↑ ATE↓ RPE-T↓ RPE-R↓ C-l1 ↓ F-score↑
0.092 0.923 0.096 0.144 0.053 0.099 0.622

✓ 0.092 0.920 0.095 0.147 0.050 0.103 0.622
✓ 0.085 0.933 - - - 0.070 0.662

✓ ✓ 0.081 0.938 - - - 0.064 0.674

distortion and stabilize the optimization.

5. Upper Bound Analysis

Our optimization can work better if accurate ground-
truth (GT) poses and intrinsics are given. As shown in Ta-
ble S3, the performance on the NYU dataset remains nearly
the same with known GT intrinsics. With known GT poses,
the quality of depth, pose, and reconstruction can be im-
proved compared to video-only optimization. With both GT
poses and intrinsics, the performance can achieve slightly
better results.

6. Discussion of Imperfect Cases

Unlike other scenes, the outdoor KITTI sequences in-
volve mostly straight-line movement with small differences
between frames. During optimization, the photometric and
geometric losses remain small even without accurate depths
and poses. Although inexact, the depths and poses are con-
sistent to enable acceptable reconstruction.

Despite the imperfect estimation of camera poses, we
can still yield satisfactory reconstruction results, because it
depends on the accuracy and the consistency of depth maps
and poses. The advantage of our optimization pipeline lies
in enabling the practical use of affine-invariant depth, and
ensuring the aforementioned consistency. Also, the robust-
ness of affine-invariant depth is transferred to pose estima-
tion, leading to fewer failure cases such as ‘scene0707 00’.
Our pipeline also allows users to input offline-obtained
poses, such as SfM poses, and jointly optimize for further
improvement.

After optimization, the reconstructed point cloud and tra-
jectory are consistent but still up to an unknown scale w.r.t.
the real world. It is an intrinsic limitation of purely monoc-
ular reconstruction methods. The unknown scale can be re-
covered by providing the GT poses, or measuring the length
of an object and aligning the reconstructed object’s size.



Table S4: Evaluation sequences of five zero-shot testing datasets. Note that we evaluate the first sequences of 7-Scenes [4].

Dataset Scenes

NYU [5]
basement 0001a, bedroom 0015, bedroom 0036, bedroom 0059, classroom 0004, computer lab 0002, dining room 0004,

dining room 0033, home office 0004, kitchen 0008, kitchen 0059, living room 0058, office 0006, office 0024, playroom 0002

ScanNet [2]
scene0707 00, scene0708 00, scene0709 00, scene0710 00, scene0711 00, scene0712 00, scene0713 00,
scene0714 00, scene0715 00, scene0716 00, scene0717 00, scene0718 00, scene0719 00, scene0720 00

7-Scenes [4] chess, fire, heads, office, pumpkin, redkitchen, stairs
TUM [6] 360, desk, desk2, floor, plant, room, rpy, teddy, xyz

KITTI [3] 2011 09 26 0001 sync, 2011 09 26 0009 sync, 2011 09 26 0091 sync, 2011 09 28 0001 sync, 2011 09 29 0004 sync, 2011 09 29 0071 sync

7. Evaluation Details

For 3D scene reconstruction, we evaluate the Chamfer
l1 distance (C-l1) and F-score with a threshold of 5cm on
the point cloud. Because of the unknown scale of estimated
point clouds, we propose first to align the scale of depth
maps and poses with ground truth through a global sharing
scale factor, which is the ratio of the median depth value
of all frames between optimized depth maps and ground-
truth depth maps. Then, we match the estimated poses with
ground truth through a 4 × 4 transformation matrix. The
matrix is computed by employing Open3D’s iterative clos-
est point (ICP) [1] algorithm between the optimized and the
ground-truth point clouds. To reduce the negative effect of
outliers for ICP matching, we remove some noisy points
whose AbsRel errors are greater than 20%.

When evaluating depth, absolute relative error (AbsRel=
|dpred−dgt|

dgt
) and the percentage of accurate depth pixels

with δ1 = max
(dpred

dgt
,

dgt

dpred

)
< 1.25 are employed. To

compare the consistency of depths along the video, we align
all frames’ depths with a global sharing factor. Similar
to the 3D reconstruction evaluation, the scale factor is ob-
tained by the ratio of the median depth value of all frames’
depths between predictions and ground truths.

For pose estimation, we follow [6] to evaluate the abso-
lute trajectory error (ATE), relative pose error of rotation
(RPE-R) and translation (RPE-T). Before evaluation, the
predicted poses are globally aligned with the ground truth.

For camera intrinsics, we evaluate the accuracy with the
“FOV AbsRel”, which is defined as the absolute relative
error of the field of view (FOV AbsRel= |FOVpred−FOVgt|

FOVgt
).

8. Optimization Details

Frames downsampling. We propose a two-stage frame
downsampling strategy to reduce the optimization time
complexity. First, all frames {Ii}Ni=1 are fed to the LeReS-
ResNeXt-101 network and get the backbone’s last layer
feature (the last layer of 1/32 stage features) as their em-
beddings {ei}Si=1 ∈ RN×C×H/32×W/32. The first frame
I0 is selected. We compute the similarity between e0 and
its next neighboring 20 frames {ei}20i=1, and each similar-
ity between two frames is computed by constructing a 4D

H/32 ×W/32 ×H/32 ×W/32 cosine similarity volume
of all pairs of two feature maps (similar to RAFT [7]) and
take the maximum value as the image similarity.

If a frame’s similarity is just lower than a threshold value
σ, then it is selected. We iteratively perform this process
to sample several frames coarsely. In the second stage, we
will evenly sample 3 frames between the first-stage adjacent
samples. All sampled frames {Ii}Pi=1 are employed for next
keyframes sampling and optimization. We set σ to 0.85.
Hyperparameters. In the local stage, we use PyTorch’s
AdamW to optimize all learnable parameters. We iterate
2000 steps in total. In each step, we random sample 50
reference frames, and their paired keyframes are sampled
based on pl for optimization. λpc, λgc, λregu are set to 2,
0.5, and 0.01 for indoor scenes and 2, 0.001, and 0.01 for
outdoor scenes respectively.

In the global stage, We iterate 4000 steps in total for the
global stage. In each step, we randomly sample 50 refer-
ence frames and the paired keyframes based on pg . ϕ is
set to π/4. For indoor scenes, the λpc, λgc, λregu are set
to 2, 1, 0.1 in first 2000 iters and 2, 0.1, 0.1 in the last 2000
iters. The λgc is set to 0.001 for outdoor scenes.

Besides, we also filter out the sky regions for out-
door scenes by predicting semantic segmentation with
SegFormer-B3 [8] during optimization.

9. Testing Datasets

In our experiments, we perform the evaluation on five
zero-shot datasets: NYU [5], ScanNet [2], 7-Scenes [4],
TUM [6], and KITTI [3]. The evaluation sequences of five
zero-shot datasets are shown in Table S4. Note that we only
evaluate the first sequences of 7 scenes on 7-Scenes, and 15,
14, 9, and 6 scenes on NYU, ScanNet, TUM, and KITTI in-
dividually.

10. More Qualitative Comparisons

More qualitative comparisons with seven representative
algorithms are shown in Fig. S1. Our method can re-
construct accurate and robust 3D scene shapes on diverse
scenes.
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Figure S1: More qualitative comparisons of zero-shot 3D scene reconstruction. Note that NeuralRecon is trained on
ScanNet [2] and can only output uncolored mesh, and ∗ represents the employment of ground-truth camera poses during
reconstruction.
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