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In this supplementary material, we include additional
method details and experimental results: (1) We provide a
demo video, which is explained in detail in Sec. A. (2) We
present additional information on our approach including
the network architecture and learning objectives in Sec. B.
(3) We provide additional implementation details in Sec. C.
(4) We show additional ablation studies in Sec. D.

A. Visualization Video
In addition to the qualitative results in the main paper,

we provide demos on the project website that showcase
more comprehensive visualizations of the task, 3D human-
object interaction (HOI) forecasting, and further demon-
strate the effectiveness of our method. In demos, we vi-
sualize that without our proposed physics-informed correc-
tion step, pure diffusion produces implausible interactions,
which is consistent with the results presented in Sec. 4 of the
main paper. In addition, we demonstrate that our method In-
terDiff can forecast diverse and extremely long-term HOIs,
while also maintaining their physical validity. Intriguingly,
we observe that our method InterDiff consistently produces
smooth and vivid HOIs, even in cases where the ground
truth data exhibit jitter patterns from the motion capture
process. Finally, we emphasize the impact and effective-
ness of our contact-based coordinate system.

B. Additional Details of Methodology
B.1. Interaction Diffusion

In Sec. 3.1 of the main paper, we have highlighted our
proposed InterDiff pipeline. Here, we explain the architec-
ture and the learning objectives in detail.
Architecture. In the reverse diffusion process, the encoder
and decoder consist of several transformer layers, respec-
tively. We set the first and last layers as the original trans-
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former layer [8], while the self-attention module in the mid-
dle layers is equipped with QnA [2], a local self-attention
layer with learnable queries similar to [7]. The encoder con-
tains an additional PointNet [6] that extracts the feature of
the object in the canonical pose. This shape encoding is di-
rectly added to the encoding of the past interaction, which
is further processed by the transformer encoder.
Learning Objectives. As mentioned in the main paper, we
disentangle the learning objective into rotation and trans-
lation losses for the human state h and the object state o,
respectively. The original learning objective is denoted as

x0(t) = G(xt, t, c),

Lr = Et∼[1,T ]∥x0(t)− x∥22,
(1)

where x0(t) is the result given by the reverse process at step
t, and x is the ground truth data, as defined in Sec. 3.1 of
the main paper.

The disentangled objectives are denoted as

Lh = Et∼[1,T ]∥h0(t)− h∥22,
Lo = Et∼[1,T ]∥o0(t)− o∥22,

(2)

where h0(t),h are the human motion generated by the dif-
fusion model and the ground truth data, respectively. And
o0(t),o are the denoised object motion and the ground
truth, respectively.

To promote a smooth interaction over time, we introduce
velocity regularizations as:

Lvh = Et∼[1,T ]∥hH+1:H+F
0 (t)− hH:H+F−1

0 (t)∥22,
Lvo = Et∼[1,T ]∥oH+1:H+F

0 (t)− oH:H+F−1
0 (t)∥22.

(3)

B.2. Interaction Correction

Architecture. Here, we use SMPL [4]-represented human
interactions as example, while we extract markers [10] over
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the body meshes as reference. The skeleton-based interac-
tion will follow the same process but use joints as reference.
We represent the object motion under every reference sys-
tem as a spatial-temporal graph G1:H ∈ RH×(1+|M|)×Do ,
where Do is the number of features for object poses, 1+|M|
correspond to 1 ground reference system and |M| marker-
based reference systems, as mentioned in Sec. 3.2.2 of the
main paper. Following [5], we first replicate the last frame
F times and get Ĝ1:H+F ∈ R(H+F )×(1+|M|)×Do , then
transform it into the frequency domain. Specifically, given
the defined M discrete cosine transform (DCT) [1] bases
C ∈ RM×(H+F ), the graph is processed as

G̃1:H+F = CĜ1:H+F . (4)

After applying multiple spatial-temporal graph convolu-
tions to obtain the result G̃′1:H+F

, we convert it back to the
temporal domain, denoted as

Ĝ′1:H+F
= CTG̃′1:H+F

, (5)

where we extract the future frames Ĝ′H:H+F
. As described

in Sec. 3.2.2 of the main paper, from this graph, we in-
dex the specific future object motion with the informed ref-
erence system s and then convert the motion back to the
ground reference.
Learning Objectives. Similar to the loss functions intro-
duced for interaction diffusion, we denote two objectives as

Lo = ∥ô1:H+F − o1:H+F ∥22,

Lvo = ∥ô2:H+F − ô1:H+F−1∥22,
(6)

where we denote the obtained object motion including the
recovered past motion as ô1:H+F , while the ground truth
object motion is o1:H+F . We adopt the contact loss Lc to
encourage body vertices and object vertices close to the ob-
ject surface and body surface, respectively. And the pen-
etration loss Lp employs the signed distances of human
meshes to penalize mutual penetration between the object
and human. For more details, please refer to [9]. Note that
for skeletal representation, we do not apply Lc and Lp.

C. Additional Details of Experimental Setup
Additional Implementation Details. For interaction dif-
fusion, the weight of each loss term (λh, λo, λvh, λvo) =
(1, 0.1, 0.2, 0.02). For interaction prediction, the weight of
each loss term (λo, λvo, λc, λp) = (1, 0.1, 1, 0.1).

D. Additional Ablation Studies
Effect of the number of DCT bases. In Figure A, we com-
pare the performance when different numbers of DCT bases
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Figure A. Ablation study on the BEHAVE dataset [3]. We evalu-
ate the long-term forecasting where we autoregressively generate
100 frames of future interactions. To balance the performance in
predicting rotations and translations, we set the number of DCT
bases to 10.

are used for the interaction predictor. The results show that
as the number of DCT bases increases, the translation er-
ror increases, while the rotation error decreases. The reason
might be that rotation is more difficult to learn and requires
more parameters. However, translation relative to the ref-
erence system is very easy to model. To balance the two
errors, we choose the number as 10.
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