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1. 3DPW dataset
Drift problem. When processing and visualizing the

original data of 3DPW-SoMoF, discovered a significant is-
sue with unnatural drift caused by camera movement, see
the ATTACHMENT. Even if the person in the scene is not
moving at all, the absolute position of the individual in the
world coordinate system exhibits strange and erratic drift.
This phenomenon is unrelated to human movement, mak-
ing it challenging to accurately forecast future motions by
studying past human behavior.

Previous work usually uses 3DPW for single-person mo-
tion estimation tasks. And the drifting problem is not so sig-
nificant in this task, since the person’s pose is generally cen-
tered to the central joint (e.g., the hip joint) when processing
the data, that is, the human trajectory is not considered and
they only take care of the change in pose when predicting
the future motion. However, in multi-person motion pre-
diction tasks, the absolute position is quite important since
the relative distance between joints derived from their ab-
solute positions contains crucial information for interaction
modeling.

We thus obtain a clean version of 3DPW-SoMoF by esti-
mating the camera movement and subtracting it. The com-
parison between the original data and the corrected data can
be found in the attachment.

Metric. The metric we mainly use for comparison on
3DPW(both 3DPW-SoMoF and 3DPW-SoMoF/RC) in the
paper is VIM, which is first proposed in the paper[1]. They
claim that the VIM is just the simple MPJPE metric ex-
cept that the invisible joints (if exist) are not penalized and
are discarded by considering the truth. However, their re-
leased code shows that it wrongly calculates the mean 3J-
dimensional distance between the ground truth and pre-
dicted joint positions after flattening the joint and coordi-
nate dimensions instead of the standard MPJPE calculation.
Although this metric can measure the difference between
the predicted result and the ground truth, it lacks a precise
physical interpretation and appears meaningless. However,
in order to compare with the results of previous work such
as TRiPOD[1], we still choose to use this metric.

MPJPE on 3DPW-SoMoF/RC. We also provide the

Table 1. Experimental results in MPJPE on the 3DPW-SoMoF/RC
test sets. The best results are highlighted in bold. Our method
achieves the best performance on the 3DPW-SoMoF/RC test sets.

Methods
3DPW-SoMoF/RC

AVG 100 240 500 640 900

Zero Velocity 16.72 5.65 10.27 18.02 21.58 28.07
LTD [5] ′2019 15.21 4.78 8.81 16.62 19.92 25.92
DViTA [2]′2021 14.27 3.65 7.70 15.22 18.89 25.89
MRT [4]′2021 12.66 4.85 8.59 14.05 16.19 19.61
SoMoFormer [3]′2022 10.55 2.60 5.94 11.77 14.29 18.15

Ours 9.53 2.18 5.05 10.50 12.98 16.93

MPJPE result on the 3DPW-SoMoF/RC dataset to have a
more meaningful comparison, as shown in Tab. 1. Our
model outperforms all the previous works at all timesteps.

Performance Analysis. Our model outperforms
most state-of-the-art methods on all datasets except
SoMoFormer[3] on 3DPW-SoMoF. Since our model di-
rectly takes the absolute positions of joints as input and all
information updates and fusions are based on this initial in-
put information, the quality of the input data will greatly
affect the performance of our model, i.e., the drift prob-
lem of the 3DPW-SoMoF dataset brings great trouble to
our method. While SoMoFormer avoids this problem by
modeling the overall trajectory information as an additional
positional embedding, and the joints input only contains
the pose relative to the central joints. We can see that i)
the human body drift in the 3DPW-SoMoF dataset is un-
natural and abnormal, which makes the comparison on the
3DPW-SoMoF dataset not very meaningful; ii) although
troubled with the drifting problem, our model still outper-
forms most previous methods and obtained competitive re-
sults compared to SoMoFormer on 3DPW-SoMoF, which
demonstrates the strong ability of our model in predicting
future motions; iii) our model outperforms all existing mod-
els on 3DPW-SoMoF/RC, CMU-Mocap, and MuPoTS-3D,
which illustrates that when the input data quality is guaran-
teed, our model exhibits the best prediction performance.
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2. Baseline Methods

Zero Velocity. As a widely used baseline method, zero
velocity predicts future velocity as zero, providing predicted
results for a stationary state. Technically, we use the last
observed frame as the prediction for the future and calculate
the corresponding metrics.

LTD [5]. LTD adopts the DCT transformation on the in-
put sequence and design graph convolutional layers to fuse
these coefficients. Before the inverse DCT transformation
to the output sequence, they use the residual connection to
the input DCT coefficients, expecting the model to learn
the residual movement. In the 3DPW-SoMoF/RC dataset,
LTD has 4 GCN layers to avoid the over-smoothing prob-
lem with a hidden size of 256. We repeat the last observed
frame for 14 times such that the input and output have the
same sequence length of 30. We train the model for 128
epochs with an initial learning rate of 1 × 10−3. We adopt
the step schedule which decays the learning rate by 0.8 ev-
ery 10 epochs.

DViTA [2]. They decouple the trajectory from the pose
and model the single-person motion using the LSTM for
trajectory prediction and VAE for pose prediction. We fol-
low the model setting and train the model using our training
schedule as LTD.

MRT [4]. MRT uses the Transformer-based encoder and
decoder to fuse the DCT coefficients. Note that the input
sequence and output sequence have different lengths and
we use the full-connected layers (MLP) to fill this gap. In
the 3DPW-SoMoF/RC dataset, DViTA has an embedding
dimension of 8, a hidden size of 64, and a latent dimension
of 32. We use the same training schedule in our experiments
without pre-train.

SoMoFormer [3]. They also uses the Transformer-
based encoder and decoder to fuse the DCT coefficients.
However, SoMoFormer firstly pads the input sequence us-
ing the last observed frame such that the input and the out-
put have the same length. For SoMoFormer in the 3DPW-
SoMoF/RC dataset, we pre-train the model on AMASS
dataset and finetune the model following our training sched-
ule.

3. More Ablation Studies

Relation Function. We verify the effect of the pro-
posed relation function by comparing it with two kinds of
variants: i). the relation function only contains the first-
order term, i.e., fRF(FR) = FRWl; ii). the relation func-
tion only contains the second-order term, i.e., fRF(FR) =∑

(FRW
1
q ⊙ FRW

2
q). The result in MPJPE on CMU-

Mocap is shown in Tab. 2. We can see that together with
both the first-order term and the second-order term, the
model achieves the best performance.

Train Loss. When calculating the training loss, we intro-

Table 2. Ablation of relation function in MPJPE on CMU-Mocap
test sets.

First-order Second-order 1s 2s 3s

✓ 8.9 14.7 19.4
✓ 8.5 14.2 18.8

✓ ✓ 8.3 13.9 18.5

Table 3. Ablation study of training loss. ’Baseline’ means the
model trained only with the prediction loss, ’+ Recon. Loss’ repre-
sents the model trained with additional reconstruction loss, ’+ DS
Loss’ is the model trained with additional deep supervision loss.
Our model is trained with both reconstruction loss and deep super-
vision, which is denoted as ’+ DS & Recon. Loss’.

Methods
3DPW-SoMoF/RC

AVG 100 240 500 640 900

Baseline 40.8 9.7 22.1 45.1 54.8 72.1
+ Recon. Loss 40.4 9.6 22.0 44.7 54.8 70.9
+ DS Loss 40.1 9.6 22.0 44.6 54.2 70.0

+ DS & Recon. Loss 39.5 9.5 21.7 44.1 53.4 68.8

duce deep supervision loss to prevent the overfitting prob-
lem caused by the deep network, additionally, we also in-
troduce the reconstruction loss to enhance the model’s un-
derstanding of historical information and utilize it to im-
prove performance. To validate these two kinds of losses,
we compare our model with three models trained with dif-
ferent losses: i) baseline model that trains only with the
prediction losses, i.e., the total loss is calculated as L =
LJ(ŶNJ) + LR(R̂Y); ii) the model trained with an addi-
tional reconstruction loss, i.e., the total loss can be for-
mulated as L = LJ(X̂NJ, ŶNJ) + LR(R̂X, R̂Y); ii) the
model training with the additional deep supervision, i.e.,
L = LJ(ŶNJ) + LR(R̂Y) + LDS. Tab. 3 shows the re-
sult, it can conclude that both the deep supervision loss and
the reconstruction loss contribute to the prediction results,
while with both the two losses, the model achieves the best
performance.

Pre-train. Due to the small sample size of the orig-
inal 3DPW-SoMoF dataset, it is insufficient for training
the Transformer, following the previous works[4, 3], we
conduct pre-train on the AMASS dataset instead of di-
rectly training on 3DPW-SOMoF. Tab. 4 shows the result
with/without pre-train. The pre-train operation on a large
data set improves the accuracy of single-person action pre-
diction and provides a good foundation for expanding to
multi-person scenarios.

Structural Hyperparameter. To explore the most suit-
able structural hyperparameters, we conduct heavy experi-
ments to study the model performance under different struc-
tural hyperparameters including the choice of layer num-
ber L, the heads number DH , and the hidden size D. Re-
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Table 4. Ablation study of pre-train.

Methods
3DPW-SoMoF/RC

AVG 100 240 500 640 900

w/o. Pre-train 45.7 12.0 26.8 51.8 61.9 76.2
w/ Pre-train 39.5 9.5 21.7 44.1 53.4 68.8

Table 5. Ablation of structural hyperparameter in VIM on 3DPW-
SoMoF/RC test sets. L represents the number of joint-relation
fusion layers, DH is the number of heads and D is the hidden size
of joint and relation feature.

Hyperparam 3DPW-SoMoF/RC Param
×106

L DH D AVG 100 240 500 600 900

2 8 128 40.7 9.8 22.5 45.6 55.1 70.3 2.6
6 8 128 39.5 9.6 22.0 44.5 53.8 67.9 4.6

4 1 128 40.2 9.8 22.4 45.3 54.6 69.0 3.6
4 2 128 40.0 9.7 22.0 44.5 54.3 69.6 3.6
4 4 128 40.2 9.8 22.3 44.6 54.3 69.9 3.6

4 8 64 40.3 9.8 22.1 44.6 54.6 70.5 1.9
4 8 256 39.8 9.4 21.9 44.3 53.8 69.7 9.8

4 8 128 39.5 9.5 21.7 44.1 53.4 68.8 3.6

GT

Ours

SoMoF
ormer

MRT

Figure 1. Another prediction sample.

sults are shown in Tab. 5. Fewer model layers or attention
heads, and smaller hidden size will all lead to a decline in
model performance. Although with 6 layers or 256 hidden
size, the model achieves competitive performance, it also
brings a heavy calculation and time consumption. Taking
performance and time consumption into consideration, we
selected the chosen setting with L = 4, DH = 8, D = 128.

4. Visualization

Visualization of prediction result. We provide another
prediction result where two persons are playing basketball
(hard prediction case), see Fig. 1. All models fail to predict
the future sequence while our method provides a relatively
more precise and reasonable prediction.

Visualization of attention. Here we provide more visu-
alization of the attention matrix. We first present the visu-
alization results of the first layer of the attention matrix un-
der 4 different motion samples, as Fig. 2 shows. Different
motions have different intra-person and inter-person inter-
action patterns. We also present the attention visualization
of different layers of the dancing sequence, as Fig. 3 shows.
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(a) dancing

(b) arguing

(c) basketball

(d) capoeira

Figure 2. Attention visualization of different sequences.
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(a) Layer 1

(b) Layer 2

(c) Layer 3

(d) Layer 4

Figure 3. Attention visualization of different layers
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