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Considering the space limitation of the main text, we
provide additional results and discussion in this supplemen-
tary material, which is organized as follows:

• Section A: Explanations and Discussions

– Depth-transformed vs. NeRF-like. A.1

– About generalization. A.2

– Limitations. A.3

• Section B: Additional Quantitative Results

– KITTI test results for other categories. B.1

– Ablation of 2D and 3D supervisions. B.2

– Ablation of depth plane samples. B.3

– Latency analysis. B.4

– Reproducibility. B.5

• Section C: Additional Qualitative Results

– What if no object detection? C.1

– Qualitative results on KITTI val. C.2

– Rendered results. C.3

– Occupancy demo video. C.4

A. Explanations and Discussions
A.1. Depth-transformed vs. NeRF-like

Questions may arise about the superiority of the pro-
posed method when compared to previous depth-based
works such as CaDDN [17]. Directly comparing their ex-
perimental results is unfair, as there are many differences
between CaDDN and MonoNeRD, besides the intermedi-
ate representation. For example, CaDDN utlizes a heavy 2D
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image backbone (ResNet-101 [8]) and depth estimate head
(DeepLabV3 [2]) while MonoNeRD inherits auxiliary tasks
such as 2D detection and LiDAR feature imitation from the
design in LIGA-Stereo [7]. To demonstrate the advantage
of the proposed method, we create a fair baseline by replac-
ing our proposed module with a two-layer 2D convolutional
neural network (consisting of a 3x3 conv2D layer, ReLU ac-
tivation function, and a 3x3 conv2D layer) to produce cate-
gorical depth distributions [17]. All other modules were left
unchanged. The baseline method can be represented by the
following equation:

Baseline = MonoNeRD - NeRF-like + CaDDN-trans.
We have already presented the 3D visualization comparison
in the main text. In Table 1, we list the differences and
experimental results on KITTI 3D [6]. The superiority of
the proposed NeRF-like representation can be observed by
comparing the results of baseline method and MonoNeRD
on KITTI val set.

CaDDN [17] Baseline MonoNeRD
Model Size 774M 83M 83M
Backbone ResNet-101 ResNet-34 ResNet-34
Depth Head DeepLabV3 [2] 2-Layer-CNN None
Depth Label LiDAR/depth completion [9] LiDAR LiDAR
3D Rep. Depth-transformed Depth-transformed NeRF-like
3D Det. Head PointPillars [10] SECOND [23] SECOND [23]
LIGA-Auxilary None L2d, Lim L2d, Lim

KITTI val AP3D 23.57/16.31/13.84 18.75/14.49/12.55 20.64/15.44/13.99
KITTI test AP3D 19.17/13.41/11.46 - 22.75/17.13/15.63

Table 1: Comparison between CaDDN and MonoNeRD.
We create a baseline for convenience and fair comparison.
“3D Rep.” and “3D Det. Head” refer to 3D Representation
and 3D Detection Head. Baseline = MonoNeRD - NeRF-
like + CaDDN-transformation.

A.2. About generalization

The generalization of a neural network model refers to
its ability to accurately perform on new, unseen data that
was not used during training. It is usually used to measure



how well the model has learned the underlying patterns and
relationships in the training data and its ability to apply such
knowledge to new data. In this section, we will discuss the
generalization of the proposed MonoNeRD from several as-
pects that readers may be concerned about.
Generalization across different scenes. Vanilla NeRF
[12] encodes the scene into a multi-layer perceptron (MLP).
Given any input 3D coordinate and viewing direction, it
outputs the corresponding volume density and radiance.
The generalization of NeRF is revealed by synthesizing un-
seen novel views, in other words, the ability to interpolate
between 3D coordinates or view directions that were not
present in the training data. So vanilla NeRF has to be
optimized per scene because new scenes are entirely dif-
ferent domains for a trained NeRF model. MonoNeRD
takes monocular images as input and predicts the signed
distance scalar for pre-defined 3D locations. By incorpo-
rating inductive biases, such as translational equivariance,
through the convolutional architecture design, the purposed
method learns underlying patterns and representations that
are shared by the training data allowing it to generalize to
previously unseen scenes. Such generalization ability has
also been demonstrated by researches in sing-view recon-
struction [18], 3D-aware view synthesis [11, 27] and gener-
ative models [4, 19, 13].
Generalization gap between training and inference. In
general, neural network models can have better general-
ization ability when trained on larger datasets compared to
smaller ones. It is because larger datasets typically provide
more diverse samples for the model to learn from, so the
underlying patterns and relationships in the training data
can be better captured. In Table 2, we present the perfor-
mance of MonoNeRD and other two depth-based methods
(CaDDN [17], DID-M3D [15]) when dealing with datasets
of varying sizes. It can be observed that MonoNeRD ben-
efits more from larger datasets. We attribute this success to
the introduced dense NeRF-like 3D representation.

KITTI val KITTI test Waymo val
Train size 3k 7k 50k
Test size 3k 7k 40k
Class Car Car Vehicle
Metric AP3D AP3D 3D mAP
IoU 0.7 0.7 0.5
Setting Moderate Moderate Level 1/ Overall
CaDDN [17] 16.31 13.41 17.54
DID-M3D [15] 16.12 16.29 20.66
MonoNeRD 15.44 17.13 31.18
vs. CaDDN -5.33% +27.74% +77.77%
vs. DID-M3D -4.22% +5.16% +50.92%

Table 2: Performance gap with different data sizes.

Generalization for cross-dataset. The generalization for

cross-dataset is a popular research topic in the field of do-
main adaption. In 3D object detection, the task of adapting
detectors from one dataset to another is first introduced by
[22]. Current researches [24, 25] mainly focus on LiDAR-
based detection because LiDAR points exhibit relatively
consistent properties across different datasets, such as trans-
lational invariance and rotational equivariance. Image sam-
ples in different datasets are collected using cameras with
different intrinsics, making it challenging for image-based
detectors to mitigate the domain gap. Our MonoNeRD is a
typical monocular 3D object detector that heavily relies on
the camera intrinsics to achieve 2D-3D constraints. We do
not design any special module to handle the cross-dataset
setting because the domain adaption task is not in the scope
of this paper.

Figure 1: MonoNeRD fails to predict density at glossy
surfaces (red box area). We find such cases by running
MonoNeRD on some outdoor monocular images of our in-
house data.

A.3. Limitations

We briefly discussed the limitations of our method in the
main text, and here we provide more detailed explanations.
First, working with bounds modeling in volume rendering is
generally believed to help improve the learning of implicit
scenes [26, 28, 12]. However, for monocular 3D detection
task, the frustum covers an infinite range of distances in the
camera view, and incorporating image features from out-
of-bound areas, e.g., the sky, could harm the final detec-



Methods Pedestrian APBEV /AP3D Cyclist APBEV /AP3D

Easy Moderate Hard Easy Moderate Hard
M3D-RPN[1] 5.65 / 4.92 4.05 / 3.48 3.29 / 2.94 1.25 / 0.94 0.81 / 0.65 0.78 / 0.47
D4LCN[5] 5.06 / 4.55 3.86 / 3.42 3.59 / 2.83 2.72 / 2.45 1.82 / 1.67 1.79 / 1.36
MonoPair[3] 10.99 / 10.02 7.04 / 6.68 6.29 / 5.53 4.76 / 3.79 2.87 / 2.12 2.42 / 1.83
MonoFlex[29] 10.36 / 9.43 7.36 / 6.31 6.29 / 5.26 4.41 / 4.17 2.67 / 2.35 2.50 / 2.04
CaDDN[17] 14.72 / 12.87 9.41 / 8.14 8.17 / 6.76 9.67 / 7.00 5.38 / 3.41 4.75 / 3.30
LPCG[14] 12.11 / 10.82 7.92 / 7.33 6.61 / 6.18 8.14 / 6.98 4.90 / 4.38 3.86 / 3.56
MonoNeRD(ours) 15.27/ 13.20 9.66 / 8.26 8.28 / 7.02 5.24 / 4.73 2.80 / 2.48 2.55 / 2.16

Table 3: Performance for Pedestrian and Cyclist on KITTI test. The best results are bold.

tion performance. Second, signed distance functions (SDF)
based modeling cannot represent non-watertight manifolds
or manifolds with boundaries, such as zero thickness sur-
faces. Third, as described in Section A.2, our MonoNeRD
takes only one image as input so it is impossible to recon-
struct a 360 degree scene. Fourth, our proposed method
fails to deal with glossy surfaces (as shown in Figure 1) be-
cause we model the radiance at each point as a function of
the spatial location. This limitation has also been discussed
by [21].

B. Additional Quantitative Results
B.1. KITTI test results for other categories

Table 3 shows the performance comparison for Pedes-
trian and Cyclist categories on the KITTI test server. Our
method achieves state-of-the-art performance for Pedes-
trian category and obtains comparable results for Cyclist
category. The performance gap on cyclist can be attributed
to the limited number of training samples available for this
class. Additionally, we provide 3D volume densit visualiza-
tion results (Section C.4) for cyclists.

B.2. Ablation of 2D and 3D supervisions

Exp. Setting APBEV /AP3D

Lleft
rgb + Lright

rgb Ldepth Lsdf Easy Moderate Hard
1 ✓ 25.49 / 18.20 19.56 / 14.11 17.18 / 12.22
2 ✓ 26.91 / 18.72 20.87 / 14.54 18.57 / 12.60
3 ✓ ✓ 27.60 / 20.07 20.61 / 14.66 17.95 / 12.45
4 ✓ ✓ 27.94 / 20.28 21.44 / 15.32 18.82 / 13.48
5 ✓ ✓ ✓ 29.65 / 20.82 22.10 / 15.29 20.02 / 13.55

Table 4: Ablation of 2D and 3D supervisions. “Lleft
rgb +

Lright
rgb ”: using stereo images (left and right RGB images)

as implicit depth supervision (See Figure 5 in the main
text), depth supervision exists implicitly under this setting;
“Ldepth”: using LiDAR depth labels as depth supervision;
“Lsdf”: using SDF loss for explicit 3D supervision. We
can see that even explicit depth supervision is unavailable,
our method still can learn depth information from stereo im-
ages.

In this section, our aim is to investigate the impact of

different depth supervisions and explicit 3D supervision.
we use two types of depth supervisions: (1) LiDAR depth
labels, which provide explicit supervision, and (2) stereo
RGB images, which force the network to implicitly learn
depth through the reconstruction loss between rendered
RGB images and the original RGB images. Table 4 re-
veals that both depth supervisions, namely LiDAR depth
labels stereo RGB images (referenced in the main text Sec-
tion 4.1.2) are able to provide 3D information for training
(Exp. 1 and 2). Interestingly, when enforcing both types of
depth supervision during training, the model does not ex-
hibit significant improvements in performance (Exp. 3). It
is possibly because the depth loss and multi-view (stereo)
loss essentially provide different types of depth information
via volume rendering, where the former uses a explicit man-
ner and the latter uses a implicit manner. Such heteroge-
neous depth supervisions may bring heavy learning burdens
for the network. Furthermore, implementing the SDF loss
leads to additional improvements in the model (Exp. 2 → 4
and 3 → 5). The SDF loss helps the model to concentrate
on geometry surfaces by enforcing 3D constraints, which
even facilitates the learning of different types of depth su-
pervisions (Exp. 4 → 5). It is worthy noting that the stereo
hardware is not a general setting for most robot/self-driving
systems. Thus we focus on the monocular setting, namely,
other experiments including the main text and this supple-
mentary material do not employ the right RGB image loss
(Lright

rgb ).

B.3. Ablation of depth plane samples

Exp. D APBEV /AP3D

Easy Moderate Hard
a 36 26.54 / 17.50 20.16 / 13.84 18.23 / 12.02
b 54 28.07 / 18.79 21.31 / 14.57 18.47 / 12.39
c 72 29.03 / 20.64 22.03 / 15.44 19.41 / 13.99
d 108 28.41 / 20.31 21.33 / 15.43 18.78 / 13.52

Table 5: Ablation of the number of sampled depth planes
(“D”).

We also conducted an ablation study on the depth plane
sampling number D mentioned in Section 4.1.1 of main



Method Run 3D mAP / mAPH (IoU = 0.7) 3D mAP / mAPH (IoU = 0.5)
Overall 0 - 30m 30 - 50m 50m - ∞ Overall 0 - 30m 30 - 50m 50m - ∞

MonoNeRD

LEVEL 1
1 10.56 / 10.46 27.36 / 27.13 5.38 / 5.34 0.65 / 0.65 31.33 / 30.84 61.33 / 60.51 26.21 / 25.84 6.60 / 6.47
2 10.69 / 10.59 27.84 / 27.59 5.31 / 5.27 0.75 / 0.74 31.15 / 30.69 60.70 / 59.91 26.05 / 25.71 6.54 / 6.41
3 10.74 / 10.62 28.31 / 27.99 5.51 / 5.46 0.76 / 0.75 31.07 / 30.57 61.31 / 60.43 25.97 / 25.59 6.65 / 6.53

Avg 10.66 / 10.56 27.84 / 27.57 5.40 / 5.36 0.72 / 0.71 31.18 / 30.70 61.11 / 60.28 26.08 / 25.71 6.60 / 6.47
LEVEL 2

1 9.93 / 9.84 27.28 / 27.04 5.23 / 5.19 0.54 / 0.53 29.43 / 28.97 61.14 / 60.32 25.49 / 25.13 5.77 / 5.66
2 10.05 / 9.96 27.75 / 27.50 5.16 / 5.13 0.62 / 0.61 29.26 / 28.83 60.49 / 59.70 25.33 / 25.00 5.72 / 5.61
3 10.10 / 9.99 28.22 / 27.90 5.36 / 5.31 0.63 / 0.62 29.18 / 28.71 61.10 / 60.22 25.25 / 24.88 5.82 / 5.71

Avg 10.03 / 9.93 27.75 / 27.48 5.25 / 5.21 0.60 / 0.59 29.29 / 28.84 60.91 / 60.08 25.36 / 25.00 5.77 / 5.66

Table 6: Three different runs on on Waymo val set.

text. As presented in Table 5, we can see consistent im-
provements as D is increased up to 72 sampling planes,
and the detector performance stays relatively stable from
72 to 108. We think it could be a constraint from high-
resolution sample strategy, which will oversample along the
depth axis, resulting in too many frustum planes with simi-
lar features.

B.4. Latency analysis

2D backbone Our module Detection module
Latency 25.7ms 91.5ms 94.6ms
Ratio 12.13% 43.20% 44.66%

Table 7: Latency for different modules.

We analyze the inference latency of our method. The av-
erage runtime of each module is shown in Table 7. We do
not include the time taken for calculating coordinate projec-
tion in the analysis as it can be pre-calculated before train-
ing or inference.

B.5. Reproducibility

To see the reproducibility of our proposed method, we
conducted three runs of MonoNeRD on Waymo Open
Dataset (WOD) [20] val split, and the results are presented
in Table 6.

C. Additional Qualitative Results

(a) Exp.(g) (b) w/o det. (c) right + w/o det.

Figure 2: Visualizations of bev-density. From left to right:
with detection loss, without detection loss, without detec-
tion loss but employing right camera view supervision.

C.1. What if no object detection?

We find the information regarding occluded regions pri-
marily relies on the object detection loss. To further in-
vestigate the impact, we conduct two experiments based
on experiment (g) in the main text. Figure 2 presents the
visualization of accumulated Bird’s Eye View (BEV) den-
sity. When removing the object detection loss, the predic-
tion of occluded regions is uncontrollable. However, when
incorporating supervisions from other views, we find that
the problem of uncontrollable predictions is mitigated.

C.2. Qualitative results on KITTI val

We present several qualitative examples on KITTI val set
in Figure 3.

C.3. Rendered results

We show the rendered results in Figure 4 and 5. All the
rendered visualization results are corresponding to the ex-
periments in Table 4. The depth maps with both LiDAR
labels and stereo RGB images supervision are better than
only with LiDAR depth labels, especially in the areas where
LiDAR depth labels are not available, e.g., the sky.

C.4. Occupancy demo video

We select two sequence videos from KITTI Raw Data
[6], which are not included in the Object Detection sub-
dataset, to conduct the 3D occupancy (volume density) vi-
sualization. The details of our selections are shown in Ta-
ble 8. Our 3D visualization is implemented with Mayavi
[16]. The generated video clips (sequence 0.mp4, se-
quence 1.mp4) are provided in the supplementary zip file.
We choose several frames in two video clips and show them
in Figure 6 and 7.

Video tag Raw data sequence Index

0 2011 09 26 drive 0005 sync 0000000020-0000000090
1 2011 10 03 drive 0042 sync 0000000180-0000000210

Table 8: Our selections for 3D occupancy visualization.



Figure 3: Qualitative visualization of MonoNeRD detections from KITTI-3D val set. Green: ground-truth 3D boxes; Orange:
baseline predictions; Blue: our predictions. Best viewed in color with zoom in.



(a) Original stereo images. Note that only the left image is the model input.

(b) Visualizations of bev-density, density is accumulated along with the height axis. From left to right: Experiment setting (1, 2, 3, 4, 5),
respectively. Low density means the 3D space is empty, while high density means it is occupied. Zoom in for better details.

(c) Rendered depth maps. (d) Rendered left RGB images. (e) Rendered right RGB images.

Figure 4: The first case rendered results of Experiments in Table 4 . The rendered images from top to bottom: Experiments
setting (1, 2, 3, 4, 5), respectively. Exp. (1) uses stereo images as depth supervision. Exp. (2) uses LiDAR depth labels as
depth supervision. Exp. (3) uses both supervisions. Exp. (4) uses LiDAR depth labels for depth supervision and SDF loss
for direct 3D supervision. Exp. (5) uses all supervisions. Zoom in for better details.



(a) Original stereo images. Note that only the left image is the model input.

(b) Visualizations of bev-density, density is accumulated along with the height axis. From left to right: Experiment setting (1, 2, 3, 4, 5),
respectively. Low density means the 3D space is empty, while high density means it is occupied. Zoom in for better details.

(c) Rendered depth maps. (d) Rendered left RGB images. (e) Rendered right RGB images.

Figure 5: The second case rendered results of Experiments in Table 4. The rendered images from top to bottom: Experiments
setting (1, 2, 3, 4, 5), respectively. Exp. (1) uses stereo images as depth supervision. Exp. (2) uses LiDAR depth labels as
depth supervision. Exp. (3) uses both supervisions. Exp (4). uses LiDAR depth labels for depth supervision and SDF loss
for direct 3D supervision. Exp (5). uses all supervisions. Zoom in for better details.



Figure 6: 3D occupancy (volume density) visualizations of Sequence (0). For each frame, top left is the input monocular
image, the bottom left is the produced 3D volume density, and the right one is visualization of bev-density. Zoom in for better
details. Video clip of this sequence (sequence 0.mp4) is provided in supplementary zip file.



Figure 7: 3D occupancy (volume density) visualizations of Sequence (1). For each frame, top left is the input monocular
image, the bottom left is the produced 3D volume density, and the right one is visualization of bev-density. Zoom in for better
details. Video clip of this sequence (sequence 1.mp4) is provided in supplementary zip file.
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