
A. Dataset and Implementation Details
Dataset. Our experiments are conducted on ScanNetV2
[7] and ARKITScenes dataset [2]. ScanNetV2 dataset is a
challenging dataset containing 1513 complex scenes with
around 2.5 million RGB-D frames and annotated with se-
mantic and instance segmentation for 18 object categories.
Since ScanNetV2 does not provide amodal or oriented
bounding box annotation, we predict axis-aligned bound-
ing boxes instead, as in [13, 30, 34]. We mainly evaluate
the methods by mAP with 0.25 IoU and 0.5 IoU threshold,
denoted by mAP@.25 and mAP@.50.

ARKITScenes dataset contains around 1.6K rooms with
more than 5000 scans. Each scan includes a series of RGB-
D posed images. In our experiments, we utilize the subset of
the dataset with low-resolution images. The subset contains
2,257 scans of 841 unique scenes, and each image in the
scan is of size 256 × 192. We follow the dataset setting
provided by the official repository 1. We mainly evaluate
the methods by mAP with 0.25 IoU as follow [2].

Detection Branch. We follow ImVoxelNet, mainly use
ResNet50 with FPN as our backbone and the detection head
consists of three 3D convolution layers for classification, lo-
cation, and centerness, respectively. For the experiment on
the ARKITScenes, we additionally predict the rotation. We
use the same size 40×40×16 of the voxels, with each voxel
represents a cube of 0.16m, 0.16m, 0.2m. Besides, we also
keep the training recipe as same as ImVoxelNet. During
training, we use 20 images on the ScanNet datatset and 50
images on the ARKITScenes dataset by default. During test
we use 50 images and 100 images on the ScanNet dataset
and ARKITScenes dataset, respectively. The network is op-
timized by Adam optimizer with an initial learning rate set
to 0.0002 and weight decay of 0.0001, and it is trained for
12 epochs, and the learning rate is reduced by ten times after
the 8th and 11th epoch.

NeRF Branch. In our NeRF branch, 2048 rays are ran-
domly sampled at each iteration from 10 novel views for
supervision. Note that the 10 novel views are ensured to
be different with the views input to detection branch for
both training and inference. We set the near-far range as
(0.2 meter - 8 meter), and uniformly sample 64 points along
each ray. During volumetric rendering, if more than eight
points on the ray are projected to empty space, then we
would throw it and do not calculate the loss of the ray. The
geometry-MLP (G-MLP) is a 4-layer MLP with 256 hid-
den units and skip connections. The color-MLP (C-MLP)
is a one-layer MLP with 256 hidden units. Our experiments
are conducted on eight V100 GPUs with 16G memory per
GPU. We batched the data in a way such that each GPU

1https://github.com/apple/ARKitScenes/tree/main/threedod

Table 10: Ablation on number of views. Due to the GPU
memory limitation, we downsample the image resolution
2x when conduct experiments on 100 views (denoted as
ImVoxelNet-R50-2x’ and NeRF-Det-R50-2x’.). Experi-
ments on each setting run three times. We report the mean
and standard deviations of our experiments.

Methods mAP@.25 mAP@.50

ImVoxelNet-R50-2x (10 views) 37.8±1.2 17.5±1.0
ImVoxelNet-R50-2x (20 views) 46.5±0.5 21.1±0.5
ImVoxelNet-R50-2x (50 views) 48.4±0.3 23.7±0.2
ImVoxelNet-R50-2x’(100 views) 48.1±0.1 24.7±0.1
NeRF-Det-R50-2x (10 views) 41.4 ±1.0 (+3.6) 19.2±0.9 (+1.7)
NeRF-Det-R50-2x (20 views) 50.2 ±0.5 (+3.7) 23.6±0.4 (+2.5)
NeRF-Det-R50-2x (50 views) 51.8 ±0.2 (+3.4) 26.0±0.1 (+2.3)
NeRF-Det-R50-2x’(100 views) 52.2±0.1 (+4.1) 27.4±0.1 (+2.7)

carries a single scene during training. During training, the
two branches are end-to-end jointly trained. During infer-
ence, we can keep either one of the two branches for desired
tasks. The whole Our implementation is based on MMDe-
tection3D [5].

B. Evaluation Protocol of Novel View Synthesis
and Depth Estimation.

To evaluate the novel view synthesis and depth estima-
tion performance, we random select 10 views of each scene
as the novel view (indicated as target view in IBRNet [44]),
and choose the nearby 50 views as the support views. To
render the RGB and depth for the 10 novel views, each
points shooting from the pixels of novel views would be
projected to the all support views to sample features, and
then pass into the NeRF MLP as illustrated in Method sec-
tion. We keep the same novel view and support view for
both setting in Table. 6 of the main text. Note that the eval-
uation is conducted on the test set of ScanNet dataset, which
are never seen during training. The non-trivial results also
demonstrate the generazability of the proposed geometry-
aware volumetric representation.

C. Additional Results

Ablation studies on number of views. We conducted
an analysis of how the number of views affects the perfor-
mance of 3D detection, as shown in Table 10. Specifically,
we used the same number of training images (20 images)
and tested with different numbers of images. Our proposed
NeRF-Det-R50-2x showed a significant improvement in
performance as the number of views increased. In con-
trast, the performance of ImVoxelNet-R50-2x had limited
improvement, and even worse, the performance decreased
when the number of views increased to 100. We attribute
the performance improvements of NeRF-Det to its effec-
tive scene modeling. NeRF performs better as the number
of views increases, typically requiring over 100 views for



Figure 6: Novel-view synthesis results on top of NeRF-Det-R50-2x*. For each triplet group, the left figure is the synthesized
results, the middle one is the ground truth RGB image, and the right part is the estimated depth map. Note that the visualiza-
tion is from test set, which is never seen during training.

an object [24]. Our proposed NeRF-Det inherits this advan-
tage, leading to a drastic performance gain of 4.1 mAP@.25
and 2.7 mAP@.50 on 100 views.

Overall, our analysis demonstrates the effectiveness of
our proposed NeRF-Det in leveraging multi-view observa-
tions for 3D detection and the importance of utilizing a
method that can effectively model the scene geometry.
More Qualitative Results We provide more visualization
results of novel-view synthesis and depth estimation, as
shown in Fig. 6. The results come from the test set of Scan-
Net. We can observe that the proposed method generalizes
well on the test scenes. Remarkably, it achieves non-trivial
results on the relatively hard cases. For example, the left
of the second row presents a bookshelf with full of colorful
books, our method can give reasonable novel-view synthe-
sis results. On the other hand, for the left of fifth row, the

extremely dense chairs are arranged in the scenes and we
can observe the method can predict accurate geometry.

D. Discussion about outdoor 3D detection

We emphasize the differences of NeRF-Det and the other
3D detection works in outdoor scenes. Our proposed NeRF-
Det shares the similar intuition with many of outdoor 3D
detection works, such as [26, 45, 21], which try to learn
geometric-aware representations. However, the proposed
NeRF-Det and the other works differ intrinsically. The out-
door 3D detection works [26, 45, 21] propose to use cost
volume or explicitly predicted depth to model the scene
geometry. Instead, NeRF-Det leverage the discrepancy of
multi-view observations, i.e., the augmented variance fea-
tures in our method section, as the priors of NeRF-MLP



input. Beyond the cost volume, we step forward to lever-
age the photo-realistic principle to predict the density fields,
and then transform it into the opacity field. Such a geom-
etry representation is novel to the 3D detection task. The
analysis in our experiment part also demonstrates the ad-
vantages of the proposed opacity field. In addition to the
different method of modeling scene geometry, our design of
combining NeRF and 3D detection in an end-to-end manner
allows the gradient of NeRF to back-propagate and benefit
the 3D detection branch. This is also different from previ-
ous NeRF-then-perception works [16, 40].

Our NeRF-Det is specifically designed for 3D detection
in indoor scenes, where objects are mostly static. Outdoor
scenes present unique challenges, including difficulties in
ensuring multi-view consistency due to moving objects, un-
bounded scene volume, and rapidly changing light condi-
tions that may affect the accuracy of the RGB value used to
guide NeRF learning. We plan to address these issues and
apply NeRF-Det to outdoor 3D detection in future work.




