
A. Other experiments
A.1. Difficult query samples

Support + GTQuery Query + GT VAT Ours

Figure 1. Difficult query samples where query FG and query
BG look similar. Zoom in for more details.

As shown in Fig. 1, we further provide two difficult ex-

amples. We could observe that query FG objects look very

similar to query BG, and it is even hard for human to per-

form segmentation. VAT [2] could not accurately separate

query FG and BG in this case, while our model could mit-

igate the FG-BG entanglement issue well, and the segmen-

tation results are quite good.

A.2. Weak support annotations

To further reduce annotation costs of support images, we

follow existing studies [10, 12, 4] to use cheaper bounding

box annotations. As shown in Tab. 1, SCCAN could out-

perform others well, and the performance is slightly worse

than using expensive pixel-wise masks, which validates the

effectiveness of SCCAN, i.e., query FG and BG could be

well differentiated.

Method 50 51 52 53 Mean FB-IoU

PANet† [10] - - - - 45.1 -

CANet† [12] - - - - 52.0 -

DPCN† [4] 59.8 70.5 63.2 55.5 62.3 -

SCCAN† 67.3 71.8 65.6 58.0 65.7 75.5

SCCAN‡ 67.5 72.6 67.2 60.5 67.0 76.4

Table 1. Study on weak support annotations. Support anno-

tations are whittled from pixel-wise masks to bounding boxes.

DPCN utilizes multi-scale testing. † means using bounding boxes,

‡ means using pixel-wise masks.

A.3. GPU memory cost

We further show the GPU memory cost of our SCCAN

(with 8 SCCA blocks), CyCTR [13] and VAT [2] in Tab. 2.

Compared with other attention-based methods, we could

observe that our SCCAN could save much GPU memory,

which could demonstrate the effectiveness of our design.

A.4. More testing episodes on COCO-20i

To make test results more reliable, we follow PFENet [8]

Method Input shape GPU memory (Mb)

CyCTR (NIPS’21) [13]

4× 3× 473× 473
25,463

VAT (ECCV’22) [2] 23,553

SCCAN (Ours) 10,667

Table 2. GPU memory cost of different methods. We uniformly

set the batch size as 4, and set the image size as 473× 473.

to randomly sample 20,000 episodes from COCO-20i to

perform meta-test again, and show the results in Tab. 3. As

we could observe from the table, our SCCAN could still

outperform previous state-of-the-arts by large margins, in-

cluding HSNet [6], DCAMA [7] and VAT [2].

B. Discussions
B.1. Support background utilization

Recall that we target on cross attention methods for FSS

in this paper, i.e., we aim to use cross attention to combine

query features with support FG features. However, exist-

ing methods suffer from two issues, namely, BG mismatch
and FG-BG entanglement, both of which are raised due to

the fact that query BG cannot find matched features in sup-

port FG. As a result, query BG will inevitably be fused with

dissimilar features and get biased. In addition, query FG

also correctly aggregate matched support FG features, and

as both query FG and BG take in support FG, they get en-

tangled, which is against the goal of FSS, i.e., distinguish

query FG and BG.

Naturally, a naı̈ve idea is to find matched BG features

from support BG. Nevertheless, we claim that it is not ap-

propriate to use support BG in cross attention-based FSS,

which is explained as follows.
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Figure 2. Dissimilar background of query and support images.

(1) Support BG is not always similar to query BG,

e.g., in Fig. 2(a), two cats in query and support images

are surrounded by window and bed, respectively; while in

Fig. 2(b), the background objects for bicycle are mountain

and sea, respectively. As query BG still cannot find matched

features in support samples, the BG mismatch and FG-BG
entanglement issues remain.

(2) Even though support and query BG could be simi-



Backbone Method
1-shot 5-shot

200 201 202 203 Mean FB-IoU 200 201 202 203 Mean FB-IoU

ResNet50

HSNet‡ (ICCV’21) [6] 35.1 41.8 38.8 38.4 38.5 65.4 41.9 49.8 46.7 44.3 45.7 69.0

DCAMA‡ (ECCV’22) [7] 38.3 41.9 43.3 40.0 40.9 63.5 43.5 49.2 49.6 46.3 47.2 66.2

VAT‡ (ECCV’22) [2] 36.5 43.2 41.3 38.9 40.0 66.2 41.9 49.7 48.3 44.4 46.1 69.4

SCCAN† (Ours) 38.5 49.1 45.4 43.7 44.2 68.1 45.4 54.7 52.7 50.7 50.9 71.8

SCCAN‡ (Ours) 39.8 50.2 47.7 45.7 45.8 69.7 47.6 57.7 57.5 53.0 59.9 74.2

ResNet101

HSNet‡ (ICCV’21) [6] 35.9 44.8 41.4 40.9 40.8 66.0 43.2 51.4 48.9 47.3 47.7 69.9

DCAMA‡ (ECCV’22) [7] 39.7 46.0 45.2 40.2 42.8 64.2 45.7 54.7 52.7 46.4 49.9 67.5

SCCAN† (Ours) 41.0 51.5 46.9 46.1 46.4 68.3 47.8 58.5 56.6 53.4 54.1 73.2

SCCAN‡ (Ours) 42.3 52.2 49.5 47.9 48.0 69.8 49.4 61.4 60.2 55.8 56.7 74.8

Table 3. Testing results of 20,000 episodes on COCO-20i. Bold results represent the best performance, while the underlined results

indicate the second best. † and ‡ indicate that the resize methods from PFENet [8] and HSNet [6] are used during testing, respectively.
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Figure 3. Two possible ways of using support BG. (a) Single
cross attention. (b) Double cross attentions.

lar, cross attention will still fail. There are roughly two at-

tempts: (a) Use the complete support features as K&V . Al-

though cross attention works normally now (as in Fig. 3(a)),

this way is against the expectation of FSS, i.e., the model

could not know which part in the support sample is the re-

gion of interest (ROI). Specifically, the sky in query is sim-

ilar to that in support, and the planes in two images are also

similar. Recall that in FSS, different objects in query im-

age will be considered as FG, with the changing of support

information, e.g., if only sky is provided in support, then

the model is expected to extract the sky-related pixels from

query and consider them as FG. Thus, we cannot use the

whole support features as K&V . (b) Jointly train two cross

attentions. As shown in Fig. 3(b), two rows aim at extract-

ing plane and sky, respectively. Although the problem in

(a) is solved, the aforementioned BG mismatch and FG-BG
entanglement come back, e.g., in two rows, query BG could

not find matched BG in support FG, and query FG cannot

find its matched FG in support BG, respectively.

In summary, support BG cannot be effectively used in

cross attention-based FSS to mitigate our proposed issues,

and our solution is absolutely effective and novel.

B.2. Pseudo mask aggregation and PFENet

Pseudo/Prior masks are recently popular in FSS, which

could roughly locate query FG objects without learnable pa-

rameters, by measuring similarity between high-level query

and support features (with annotations) that are directly ob-

tained from the pretrained backbone.

PFENet [8] firstly propose such cheap but effective

mechanism. Specifically, it firstly measures the similarity

between each pair of query pixels and support FG pixels.

Then, for each query pixel, its largest similarity score is nor-

malized and taken as its probability of being query FG.

However, there exist two issues: (1) PFENet only uses

support FG for comparison, which will be limited when the

gap between query FG and support FG is large, e.g., human

head (query FG), and human arms (support FG). Conse-

quently, the similarity scores between support FG and query

FG/BG are both small, and thus, the locating function of

pseudo masks are weakened. For instance, in the forth col-

umn of Fig. 4, the ships in query and support are not so sim-

ilar. Although the generated mask could still locate the ship

in query, there are many wrongly activated BG pixels, and

the model is likely to also take them as FG. (2) As PFENet

only takes each query pixel’s largest similarity score for ref-

erence, the generated pseudo mask is not robust, e.g., it will

be heavily affected by noises. As we could observe from the

first column of Fig. 4, the pseudo mask of PFENet cannot

locate the car in query image well.

As introduced in the paper, PMA could mitigate these

issues by: (1) We also take support BG into consideration,

e.g., human head (query FG) is more similar to human arms

(support FG), compared with room (support BG). (2) For

each query pixel, we calculate its similarity scores with all

support pixels, including FG and BG. Then, the normalized

scores are used to aggregate the support mask values (FG is

1, BG is 0) and generate the pseudo mask. In this way, the

side-effect of single largest value could be suppressed.

Some training-agnostic pseudo masks obtained from

PFENet [8] and our PMA module are visualized in Fig. 4.

Besides, we further use threshold 0.75 to binarize the

pseudo masks and directly measure their mIoU scores (av-
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Figure 4. Comparisons of training-agnostic pseudo mask generation methods between PFENet [8] and our proposed pseudo mask
aggregation (PMA) module.

eraged from 4 folds) on PASCAL-5i, with ResNet50 as the

backbone. The scores of pseudo masks from PFENet and

PMA are 22.8% and 38.7%, respectively. In conclusion,

PMA could consistently outperform PFENet in two aspects:

(1) PMA is better at locating query FG. (2) There are less

wrongly activated BG pixels in the generated pseudo masks.

B.3. Comparison with CyCTR [13]

It is confusing that CyCTR [13] seems to be a solution to

the BG mismatch issue, but it is actually not, and we explain

the reasons as follows. (1) It is more appropriate to claim

that CyCTR is likely to not have the above issue, when

query and support BG belong to the same class. However,

we mention the side-effects of using support BG in cross

attention-like methods in Appendix B.1. (2) When BG
classes differ, CyCTR consistently suffers from the above

issue. Its cycle-consistent attention does not solve this is-

sue, which starts from a support BG pixel PS , finds its most

similar query pixel PQ, and find PQ’s most similar support

pixel P ′
S . PS is preserved as long as P ′

S belongs to BG, re-

gardless of the difference between BG classes, i.e., its cross

attention still fuses dissimilar support BG to query BG.

B.4. Comparison with VAT [2]

VAT [2] looks similar to our SCCAN in the following

two aspects: (1) It is also built upon swin transformer [5].

(2) VAT converts FSS task to semantic correspondence task

which focuses on features matching and fusion.

However, VAT and existing cross attention FSS meth-

ods [9, 11, 13] only target at the matching of query FG, and

suffer from the BG mismatch and FG-BG entanglement is-

sues. Instead, our main purpose is to match and fuse query

BG with appropriate BG features to mitigate these issues.

B.5. Comparison with BAM [3]

BAM [3] is a latest baseline, however, we do not include

it in the main results because BAM adopts a special setting,

which is a bit different from the standard one. That is, BAM

extends standard FSS methods by using base classes’ seg-

mentation results, and its meta learner could be any standard

FSS model (including ours).

In spite of the setting difference, with ResNet-50, our

model (70.3%) could still achieve comparable 5-shot results

with BAM (70.9%) on PASCAL-5i, and our model (52.3%)

surpasses BAM (51.2%) on COCO-20i.

B.6. Comparison with SSP [1]

SSP [1] also focuses on the matching issues, and we ex-

plain the differences, as well as the superiority of our model,

as follows:
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Figure 5. Frameworks (a) SSP and (b) SCCAN.

(1) As illustrated in Fig. 5(a), SSP coarsely separates

query FG and BG first, based on which FG and BG pro-

totypes are then constructed. Finally, similarities are cal-

culated between query features and two prototypes for seg-

mentation. Instead, our model (as shown in Fig. 5(b)) en-
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Figure 6. Different resize methods adopted in existing base-
lines. (a) Original aspect ratio. (b) Different aspect ratio.

hances query features with the concatenation of query fea-

tures and support FG, and then use CNN for segmentation.

(2) SSP’s BG prototype is unreliable. (a) With the coarse

separation in the first phase, we cannot guarantee if the ob-

tained BG prototype contains pure BG information or not;

(b) Query BG usually contains multiple objects, e.g., tree

and grass in the second row of Fig. 1. As BG prototype

only contains features that are most dissimilar to support

FG, it may only include grass features in this case. Hence,

tree features and BG prototype still mismatch.

(3) Our model outperforms SSP by a large margin, e.g.,

1-shot mIoU on PASCAL-5i is 6.1% better than that of SSP.

C. Different resize methods
As mentioned in the tables of quantitative results, there

are two resize methods in existing state-of-the-arts meth-

ods, and we illustrate their difference in Fig. 6. In short

summary, the resize method used in PFENet [8] will resize

the input query and input images, while keeping the original

aspect ratio, and the shorter edge will be padded. Instead,

HSNet [6] directly resizes the images to the specific shape,

e.g., 473×473. As a result, the resized objects in HSNet

will be larger than those in PFENet. Particularly, HSNet

could access to better support information, and the obtained

segmentation results could be better.
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