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1. Application Details
1.1. Disentanglement of Style and Semantic

The disentanglement application conducts controllable image-variation, supported by the image-variation flow of VD.
Such flow consists of AutoKL, CLIP image encoder, and VD’s diffuser with image data layers and image context layers.
The core strategy of the disentanglement is to manipulate the 257 x768 CLIP image context embedding, which guided the
diffusion process via cross-attention. Recall that these embeddings are generated by the visual transformer [3], which begins
with one global feature vector followed by 256 local feature vectors corresponding to image local patches. We first split the
vector into the single global vector and the following 256 local vectors. We keep the global vector untouched and compute
the principal components from the rest of the feature vectors. When manipulating the context embeddings, we notice that the
first couple of principal components (i.e. the major principal components of the matrix) hold the style information (i.e. color,
art, stroke styles), and the remaining principal components hold the semantic information (i.e., objects, object locations,
identity). Thus, in practice, we generated image variations with style focuses from the guidance of the low-rank context
embedding that hosts only major principal components. And we generated image variations with semantic focuses when we
removed these major principal components from context embeddings. In Figure 1, we show additional qualitative results, in
which we standardize the disentanglement with five levels:

(a) O represents normal image-variation.
(b) -1 and -2 are semantic-focused by removing one and two major principal components.

(c) 1 and 2 are style focuses results corresponding to keeping only 10 and 2 major principal component.

In practice, we also notice that principal components after order 50 have little effect on results. Therefore, we can speed
up the disentanglement PCA by just computing the first 50 principal components and then conducting the manipulation.
For the global feature vector, we notice that it mainly serves as a semantic feature that controls object location information.
Hence, removing it may negatively impact image structure (see Figure 2) but may be useful in some art generation cases. We
encourage researchers to explore further the low-rank subspace of the CLIP Image embedding for more exciting applications.

1.2. Dual-context Blender

The dual-context blender for VD is to generate images through the guidance of one image and one text prompt. The-
oretically, such an application can also be used to create new text/sentences, but the results are less exciting than creating
new images. As mentioned in the main article, the dual-context blender, or the multi-context blender, can be achieved by
ensembling two models in which we mix the diffusion steps from one model after another (type A), or weighted sum up both
models’ outputs (type B). However, in practice, we notice that such approaches may cause structure distortions and highlight
wrong semantics despite doubling the model usage. Unlike these simple ensembling methods, VD can carry out this task
via a much deeper level of mixing due to its multi-flow multimodal framework. As mentioned in the main article Section
3.2, our framework has three layer groups: global, data, and context. When generating images, features diffuse through
the shared data layers (i.e. ResBlocks), and then mix up via different context layers with two options: layer-level mixing or
attention-level mixing. In layer-level mixing, we diffuse features through different context layers (i.e. cross-attention) that
follow a preset schedule. For example, we diffuse features through one image cross-attention, then a text cross-attention, efc.
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Figure 1: Additional figures that show the performance of our proposed disentanglement application with different levels.

In attention-level mixing, both immediate features after context layers are included via a weighted sum and then passed to
the network’s next block (See Figure 3).

We believe that the success of the dual-context blender heavily relies on VD’s multi-flow design that can merge contexts
in a harmonized way. An example shows in Figure 4 in which we generate an image using a car as image context and a
prompt a double-decker bus as text context. Such a case manually brings challenges in mixing, since a Benz car in the image
and a double-decker bus described in the prompt have completely different shapes. However, attention-level mixing nicely
resolves such conflict and we notice a smooth transition between these two contexts with increasing mixing rates. On the
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Figure 2: This figure shows four comparisons between samples generated via context with the global vector and without the global vector.
The two left cases are semantic-focused outputs, and the two right cases are style-focused outputs.
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Figure 3: The graphic explanation of the three mixing strategies we mentioned in our dual-context blender. Both (a) and (b) are two types
of model-level mixing.

other hand, our results indicate that layer-level mixing slightly underperforms attention-level mixing as the generated vehicle
shows some noticeable distortion (see the wheels in the second line). Lastly, we show the results from model-level mixing
using two of our baseline models SDv1.4 and SD-variation, which perform the worst among all three methods. Given these
results, we conclude that VD is critical for the success of our dual-context blender tasks, in which its multi-flow multimodal
network framework is the key to effectively resolving potential conflict and merging various contexts.

1.3. Multi-context Blender with Optional Masks
Multi-context blender is an extension of our dual-context blender with the following changes:
(a) It takes more than one image as a concatenated context of image type.

(b) It accepts additional scale control on each of the input images.

(c) It allows adding individual masks to precisely control the generated output based on reference images.
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Figure 4: Additional figures that show the performance of our proposed dual-context blender. The horizontal axis shows the mixing rate
we use in these samples: small mixing rates lead to image-focused (to the left), and large mixing rates lead to text-focused (to the right).
For each sample, we show three rows, from top to bottom are the results of attention-level mixing, layer-level mixing, and model-level
mixing, in which the top row (attention-level mixing) is the best.



Adding an extra image as reference context is actually simpler than adding an extra context type. Specifically for VD,
context from multiple images can be concatenated, forming a more extended sequence of context embedding that later serves
as input to content layers. For example, context embedding one image is a 257 x 768 embedding in which 257 is the number
of embedding vectors and 768 is the embedding channel. Context embedding for two images is simply a concatenated feature
of two images embedding along the number dimension, making it 514 x 768, and so-on-so-forth for more images. Therefore,
such operations do not alter any mixing strategies that we used in the dual-context blender.

To make more precise control of images used in our multi-context blender, we involved two controllable parameters:
image scales and image masks. Image scales are simple multipliers associated with underlining image context embeddings,
while image masks involve more complex designs. We notice that a naive solution to replace contents in masks with zeros
may confuse the model of generating images with black patches. Thus we altered the CLIP network, in which the raw image
features after the first convolution projection of ViT [3] and the input positional encodings are filled with zeros according to
masks before inputting the transformers. As a result, we successfully involved scales and masks in our blender application.
More results can be found in Figure 5.
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Figure 5: Additional examples generated by VD’s multi-context blenders. As mentioned in the paper, our multi-context blender uses
multiple images with optional masks adding an extra text prompt (also optional) to guide its generation process. Its outputs are then a
blender of all input context.

1.4. Editable 12T21

Since VD supports both image-to-text and text-to-image, one heuristic image editing approach we can do is to edit images
with the following steps: (a) convert image to text, (b) edit text, and (c) convert text back to the image. We named this
approach image-to-text-to-image (12T2I). Although the principle of I2T2I is simple, we notice that in practice, many issues
may negatively affect the outputs, making them less robust than expected.

Unlike inpainting or multi-context blending, I2T2I requires no object masks because one design goal of I2T21 is to let it
automatically locate and substitute objects following the prompt instruction. Meanwhile, I2T2I’s output images do not match
its input images pixel by pixel, which is a result of semantic distillation and content creation. Figure 6 shows the prototype
results of our I2T2I in which old contents inside the image are removed and re-placed via prompt editing. To the best of
our knowledge, this is the first attempt at creating and editing images by combining image-to-text, text editing, and then



text-to-image. Yet we notice the following issues that may dramatically decrease the performance:

(a) The output quality is affected by both image-to-text and text-to-image performance. The failure of
either one of the sub-procedures will result in unsatisfactory results.

(b) Sometimes, direct editing of the generated text could be infeasible, as there is no guarantee that the text
contains the descriptions we would like to modify.

(c) Image-to-text is a process of information distillation, while text-to-image is a process of information
creation. Although such properties bring great flexibility in I12T2I editing, they may differ from general
users’ demands because they may like to keep more content from the reference images.

To overcome these issues, we tackle these issues with the following solution. Instead of editing the text directly, we
actually modify the latent text vectors as a solution to b) issue. Speaking with details, in our editing experiment, we prepare
a negative and positive prompt to do the editing. The negative prompt describes image content that needs to be removed, and
the positive prompt describes the content to add. When the text latent vector is ready (using image-to-text), before converting
it into text, we project it on the normal space of the negative prompt latent vector and sum it up with the positive prompt
latent vector. To further strengthen the positive prompt, we also compute its CLIP embedding and concatenate it with the
modified prompt embedding, and then guide the image generation. Meanwhile, we adopt the ideas from our disentanglement
and dual-context blender, in which we compute the style disentangled image context and use it as secondary guidance in the
generation process with a 0.66 mixing rate. The final performance of I2T2I can be found in Figure 6.
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Figure 6: This figure shows the performance of our proposed image editing method I2T2I with negative and positive prompts. (see
Section 1.4)



2. Image-Variation Analysis and Beyond
2.1. Unconditional Guidance

We also did an in-depth investigation on the influence of the unconditional guidance (i.e. classifier-free guidance) of the
image-variation. Recall that such mechanism is first involved in class-guided generation [5, | 1] and later largely adopted by
text-to-image models such as [11, 10, 12]. Here we recap the core math in Equation 1:

Y="Yu+ (yc - yu) *8, Yu = G(Cuncond)a Ye = G<Ccond) (1

in which y is the final output, s is the unconditional guidance scale, y,, is the unconditional output from generator GG using
unconditional context cyncond, and . it the conditional output from G and ccong. For text-to-image, cyncong are usually set to
the text embeddings encoded from empty strings. For image-variation, we have two options:

(a) CLIP embeddings of empty images with all zeros
(b) All-zero embeddings

As shown in Figure 7, both methods have pros and cons: Option (a) tends to highlight content and style in the reference im-
age, and thus its results are more art-focused with better color contrast. Option (a) may also yield slightly better-performing
disentanglement and dual-context because it sensitively captures details from input contexts and “magnify” them in the out-
put. While this option sometimes may “over-react”, which results in unbearably color and structure distortions. Conversely,
Option (b) is a more robust solution that performs better on photorealistic inputs and generates outputs closer to reference
images with fewer distortions.
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Figure 7: This figure shows the image-variation performance of two types of unconditional guidance described in Supplementary Sec-
tion 2.1. The top two rows are cases where type (a) yields better results, while the bottom two rows show that type (b) yields better results.

2.2. Image-Variation with ControlNet

ControlNet [15] and similar techniques such as [9, 6] have recently proposed a practical image editing solution involving
pretrained text-to-images models and adaptive networks. One benefit of ControlNet is once an adaptive network (i.e. control
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Figure 8: This figure shows the demo of our VD’s image-variation results with ControlNet. A new type of image CLIP, CLIP-PA, is used
to generate these results.

network) is set up, it can be easily transferred to other text-to-image models without further effort in training. Such conve-
nience inspires us to combine the same adaptive network strategy with VD’s image-variation, forming a new application for
prompt-free controllable image generation.

In Figure 8, we show the performance of this new application with canny edge and depth ControlNet. The usage of these
ControlNet closely follows text-to-image approaches:

(a) We first prepare a well-trained image variation model under VD’s framework.
(b) We download the pretrained ControlNets and load them together with VD.

(c) We then control the image-variation process under the guidance of these ControlNets just like in text-
to-image. The sole difference is we don’t need any prompts.



One thing to notice is that the image-variation model we use for ControlNet slightly alters from the default version of
VD, in which we remove the positional embedding layers from the CLIP image encoder to make it a position-agnostic
CLIP (CLIP-PA). We then prune VD, letting the image-variation flow, and finetune it with the new CLIP-PA. The finetuned
checkpoint is then a position-agnostic image-varation model. Once we have this new model, we can add ControlNet’s
adaptive network as text-to-image approach. The final outputs will then be a combination of ControlNet’s structure hint and
VD’s semantic and style.

3. Data and Training
3.1. Laion2B Prompt Cleaning

As mentioned in the main article Section 4.1, we cleaned text prompts from Laion2B in order to include Optimus VAE for
the to-text flows in VD. Our rules of cleaning the prompts are the followings:

(a) Remove all HTTP links, URLs, and email addresses

(b) Remove HTML syntax.

(c) Remove unnecessary contents included by square or curly brackets.

(d) Remove unnecessary symbols such as dashes, slashes, and underscores.

(e) Remove all kinds of quotes but keep ’s.

By cleaning these captions, we were able to train VD’s to-text flows in a more robust way. We did not apply such prompt
cleaning when training VD on its to-image flows.

3.2. Alternative Training

In Section 4.2, we mentioned that VD’s training follows a progressive rule in which we train a single-flow VD, a dual-flow
VD, and finally, the four-flow VD in order. Recall that VD’s single-flow model is an image-variation model, which means
that image-variation is the “beginning task” VD first learns. This happened to be the rule we followed in the main paper, but
it did not stop other possible ways of training. In fact, training VD can be more flexible. To demonstrate such flexibility,
we alternatively trained a VD in which we set text-to-image as the “beginning task”. We compare the final results of this
alternative VD model (labeled as VD-Alt) with the paper model (labeled as VD) in Figure 10, in which both yield to similar
performance.
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Figure 9: A graphic explanation of possible ways of training the generalized VD with M types of context that supports NV types of outputs.
The green dash box crop out the current VD/VD-AIt mentioned in the main paper and the supplementary. VD’s training shows the black
paths starting from IV (image-variation), while VD-Alt’s training shows an altered red path from T2I (text-to-image).
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Figure 10: The qualitative comparison between VD and VD-Alt on text-to-image and image-variation. For image-variation, We show both
results using unconditional guidance (UG) type (a) and (b) described in Supplementary Section 2.1.
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The success of VD-ALIt reveals that there may exist many feasible training rules for the multi-flow multimodel diffusion
models with M context N outputs. A graphic explain of the collections of rules is illustrated in Figure 9. Given that our VD
and VD-ALlt all yield good performance, we prompt researchers to further explore the flexibility of training VD, which could
also be one of the exciting properties of universal Al

3.3. Loss Curves

We reveal VD’s train-time loss curves in Figure 11. All experiments were carried out using a single node with 8 A100
GPUs (80G memory). To make the effective batch size matches the batch size we mentioned in the main paper Section 4.2
(i.e. 2048, 1024, and 512), we utilized the gradient accumulation technique in which we performed multiple backpropagations
with one gradient update. The batch per GPU for single backpropagations are 64 for resolution 256 and 16 for resolution
512. The gradient accumulation loop can then be calculated as:
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Figure 11: This figure shows the loss curves of VD single-flow, dual-flow, and four-flow during their training phases.
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4. Text-Variation Performance

We show the performance of our text-variation results in Table 1, in which a total number of 8 outputs are sampled from

VD for each input.

Inputs

Outputs

blue and yellow balloons in
the sky

two blue balloons and yellow
balloons flying in the blue sky and
the yellow sky in the sky above the
blue sky.

two blue balloons and blue
balloons flying under the yellow
star and the blue and the yellow
lights in the sky.

blue balloons and the yellow blue
balloons and blue sky blue sky
behind the sky.

two balloons blue and the yellow
balloons and blue balloons blue up
the yellow sky three above the sky
in the sky.

yellow blue balloons and two blue
balloons and the yellow balloons in
the sky above blue blue.

two blue balloons and the blue
balloons in the blue and yellow
balloons in the yellow and the
green sky.

two blue balloons and yellow
balloons yellow in the blue sky and
the large sky at the sky.

two blue balloons and blue lights in
the yellow and blue sky blue sky
near the sky in the sky.

man standing on the beach
near sea

man standing on the beach standing
on the beach on the city beach.

man standing on the beach standing
at the beach on the beach beach.

man standing on the beach
standing on the beach standing at
the city beach.

man standing on the beach standing
on the beach on the beach beach.

man standing on the beach standing
on the beach near the beach.

man standing on the beach
standing on the beach standing on
the beach at the beach.

man standing on the beach
standing on the beach on the beach.

man standing on the beach
standing on the beach at the beach

grand nebula in the universe

star giant birds in the huge galaxy
circle the planet in the cloud

giant star wars in the beautiful
moon of the giant symphony in the
earth.

huge star in the crystal world in the
big stadium

giant star the great moon in the a
huge galaxy in the giant field.

giant star stars in the huge moon
the a huge field in the beautiful
city.

the giant bird in the giant the huge
world in the moon shaped.

giant star the moon in the huge
galaxy field in the giant field.

giant birds the world in the
beautiful star planet in the stadium.

realistic scenery of Houston
texas city view under a starry
sky in hyperrealistic style and
ultra HD, 8k

dramatic urban landscape of a city
construction photo with city
marquee and cloudy buildings in
the foreground, a bright buildings
movie studio imaging the scene in

beautiful skyscaw electronic photos
star crystal-lit city skyline of a city
scene in a scenic highway with a
bright city skyline, home cabin on

a dark-park high-lit city skyline
scene behind huge city laid
buildings and landscapes,
scoredReport artist dressed in the
lovely backdrop,

downtown drone shot sharply with
a very bright and colorful skyline
city background, a backdrop with
technical snowy skyline city
skyline, the musical play a

a competitive picture through a
bright city cinema camera with a
massive neon, big city mountains
and city skyline buildings in the

a scenic city photo photographs
show extreme bright sunshine, a
hotel lights exciting city a skyline
city at a peak, sky construction big
city, with

city photography studio Kill a
beautiful cityscape shot up close
and with an urban theater star
skyscrap backdrop with a city
skyline square, the

scenic blue skysct star buildings
with city and city skyline aerial
view in the foreground in the
background in a sunny bright urban
setting overlooking

a pink car

a pink car a car

a pink car

a pink car a car

a pink car a car

a pink car

a pink car

a pink car a pink car

a pink car a pink car

a handsome-looking horse
rider

a well-dressed man a smiling horse
riding a horse.

a well a handsome horse-m a horse
smiling. a handsome horse man
riding a horse.

a very a handsome a horse man
dressed a his horse riding his horse

a very a tall a horse-ring horse rider
a horse riding his short a horse.

a well-eired a man a smiling horse
riding a horse rider.

a well a- dressed horse wearing a
happy horse riding a horse rider. a
horse. a good horse. a horse

a well-looking a young horse-hired
man riding a horse.

a handsome a horse- aired man
riding a attractive horse.

5. Limitation

Table 1: This table shows the performance of VD on text-variation.

So far, we have shown that VD is a powerful model with outstanding capacities. However, VD still has noticeable
limitations in some aspects, such as image-to-text, efc. In this session, we would like to discuss the limitation of our work as
well as future research directions for improvements.

Limited Latent Space: During our experiment, we noticed that VD’s major weakness is text generation (i.e. image-to-
text, text-variation, 12T2I). We believe that such weakness can be largely improved if we expand the scope and capacity
of the Optimus VAE [7]. Unlike the AutoKL [ 1] (i.e. the image VAE), which transforms images into latent features with
dimension 4 x 64 x 64, and thus keeps the necessary spatial information, Optimus’s latent vectors are 768 single dimension
vectors generated using Bert [2] which may be inadequate for long text sentences. We believe that a better solution should
adapt word locations and orders, forming a latent space of sequences, which makes text generation and restoration in later
stages easier. In our experiment, we also noticed that VD tended to generate sentences with repeated descriptions, which
partially proves our guess that the corresponding VAE is weak in understanding word locations and orders.

Imperfect Data: Another issue that limited VD’s performance was the imperfect text data we used in training. As
mentioned in the main article Session 4.1, we formalized web-scraped prompts and captions with extensive engineering
effort. We notice that with these cleaned captions, VD’s training procedure on text-generation tasks had become more robust
and easier to converge. Therefore, an immediate future target for VD research is to prepare a finetuned dataset that helps
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VD improve its model accuracy. Meanwhile, the pretrained Optimus VAE also had certain data limits. In our experiment,
we noticed that Optimus VAE had difficulty reconstructing Laion2B captions. An example is shown below: “Assorted
Cuff Colors Sandals Platform Leather Unique Ladies 1TO9 Cow Camel Ankle Brown EqBF6TTO” (Laion2B), "leatherback
canvas females posses exotic fruits terme white grass patchions” (Optimus Reconstruction). We think the issue comes from
a domain shift from Optimus’s training data (i.e. PTB [8], SNLI [1], Yahoo and Yelp corpora [14, 4]) to VD’s training data
(i.e. Laion2B [13]), in which the former contains normal sentences with good grammar, and the latter contains long and
descriptive sentences with online freestyle. Therefore, preparing a finetuned text VAE could be the critical next step for
future VD research.

6. Gallery
Please see Figure 12, 13, 14, 15
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“A wonderful evening in New York City with a
great view of Brooklyn Bridge and a
magnificent city view of Manhattan, HD 8K”

“A beautiful painting of waves crashing on
a cliff by Thomas Cole”

“Cluttered house in the woods anime “Mountain Everest turns into an active
oil painting high-resolution cottagecore volcano with hot lava coming out
Ghibli inspired 4k” from the ground”

Figure 12: More text-to-image results.
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Variation #1 Variation #2

Figure 13: More image-variation results.

Input Variation #1 Variation #

Figure 14: More image-variation results with some mild semantic focus to achieve better photorealism.
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“Modern art sculpture” “Heavy armed transformer”

Figure 15: More dual-context blender results, in which the input image is shown at the top left corner, and input prompts are shown as
sample labels.
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