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1. Additional Technical Details
Apart from the implementation details in the main paper,

we show more details of our network in this section.
As described in the main paper, our WMVS module

utilizes varying granularities for the spatial sweep planes,
specifically Ds values of 8, 32, and 48, while using a Dw

value of 32 for the frequency sweep plane. Additionally, we
employ zero padding in the wavelet transform and maintain
a consistent number of channels (C = 8) for all feature vol-
umes. To accommodate input images whose sizes are not
divisible by 8, we apply padding to make them multiples of
8 before computation, and then restore their original sizes
after passing through the operators. In the HNR module,
we employ occlusion masks, angle-based weight calcula-
tion, and token generation as in GeoNeRF [5]. We kept
these techniques consistent for the spatial domain and ex-
tended the same idea to the frequency domain.

We train our WaveNeRF model for 225k iterations us-
ing one RTX 3090 GPU. Each iteration randomly samples
one scene and 512 rays are randomly selected as a training
batch. We use an Adam optimizer with an initial learning
rate of 5e − 4 and a cosine learning rate scheduler without
restart.

We also mentioned in the main paper that we adopted a
depth supervision technique and depth losses. DS-NeRF [3]
shows that depth supervision can help NeRF train faster
with fewer input views. Also, some generalizable NeRF
studies [2, 5] display the effectiveness of depth supervision
when the samples are from the dataset with ground truth
depths. Therefore, we follow their depth supervision loss
by comparing our predicted depth d̂ with the ground truth
depth dgt.

Ld =
1

|Rd|
∑
r∈Rd

||d̂(r)− dgt(r)||s1, (1)

where Rd is the set of rays from samples with ground truth
depths and || · ||s1 is the smooth L1 loss.

In addition, although we design a new WMVS module
to create cascade feature volumes as well as a wavelet fea-
ture volume, we can still predict the depth maps for each
level of the cascade feature volumes. Therefore, we can fol-

low the self-supervised depth loss function in GeoNeRF [5]
for the dataset without the ground truth depth. We take the
rendered ray depths as pseudo-ground truth D̂

(l)
v (rv) and

warp their corresponding colors and estimated depths from
all source views using camera transformation matrices.

L(l)
dus

=
2−l

|V ||R|

V∑
v=1

∑
r∈R

||D̂(l)
v (rv)− d̂(rv)||s1, (2)

rv = T→v(r, d̂(r)). (3)

Given a ray r at a novel pose with rendered depth d̂(r),
T→v(r, d̂(r)) transforms the ray to its correspondent ray
from source view v using camera matrices. And d̂(rv) de-
notes the rendered depth of the correspondent ray with re-
spect to source view v. Finally, the whole depth loss func-
tion of our model is represented as:

LD = Ld +

2∑
l=0

L(l)
dus

. (4)

2. Additional Experiment
2.1. Different Wavelet Transform Levels

The Wavelet Transform is capable of breaking down an
image into various frequency feature maps with different
scales. The number of scales employed in the transforma-
tion determines the number of levels of feature volumes in
the WMVS module. Generally, the greater the number of
levels of volumes, the more refined the depth hypotheses
planes become, which theoretically leads to better perfor-
mance. However, using more scales comes with a higher
memory cost. Furthermore, when employing a scale J
wavelet transform, the resulting decomposition yields fea-
ture maps of size H

2J
× W

2J
, which presents a challenge when

J is large due to the difficult padding operation. As such, we
trained our WaveNeRF model using different scales rang-
ing from 1 to 3 and evaluated them under the same settings
and the same memory cost as the previous evaluation ex-
periments. The quantitative results are shown in Tab. 1
and we can see from the table that the performance of the

1



Ground truth a b c d e

Figure 1: Qualitative comparisons of (a) the baseline model without any of our novel modules, (b) the baseline model + our
WMVS module, (c) the baseline model + our WMVS module + our FSS sampling strategy, (d) the baseline model + all three
of our proposed modules but without the WFL loss, and (e) our complete model, on the DTU datset [4].

scale 3 Wavelet Transform even drops severely. There may
be two reasons for this result. One is that the complicated
padding operations may disturb the learning process and the
other potential reason is that the number of depth hypothe-
ses planes for each volume is low due to memory limitation.
If we further increase the number of scales, the padding be-
comes extremely hard and may even lead to the failure of
training.

Scale
Level

DTU [4] LLFF [6]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1 28.67 0.933 0.101 23.92 0.781 0.221
2 29.55 0.948 0.0749 24.28 0.794 0.212
3 27.31 0.899 0.134 23.54 0.761 0.251

Table 1: The results of different wavelet scales in terms of
PSNR ↑, SSIM↑, and LPIPS↓ metrics.

2.2. Per-scene Breakdown

Tab.2 provides the quantitative results of our model on
each scene of the NeRF Synthetic dataset [7] and the LLFF
dataset [6] in terms of PSNR↑, SSIM↑, and LPIPS↓. We
also display more qualitative results in Fig.2, 3. Fig.2 shows
more comparisons between the ground truth and our ren-

dered images on the LLFF dataset [6] while Fig.3 shows
extra rendered results on the NeRF Synthetic dataset [7].

2.3. Qualitative Results for Our Ablation Studies

In the main paper, we mentioned that we conducted our
ablation studies with the following variants: (a) the baseline
model without any of our novel modules, (b) the baseline
model + our WMVS module, (c) the baseline model + our
WMVS module + our FSS sampling strategy, (d) the base-
line model + all three of our proposed modules but without
the WFL loss, and (e) our complete model. Here we present
some qualitative results of our ablation studies on the DTU
datset [4] in Fig.1.

2.4. Budget Analysis

Due to the different experiment settings between the few-
shot NeRF methods and the fast NeRF methods such as
Instant-NGP [9] and TensoRF [1], we only conducted the
budget analysis and compare our work with GeoNeRF [5].
The table below shows the comparisons in parameter num-
bers, training time, and inference time (on a single RTX
3090 GPU). Our model has fewer parameters but longer
training and inference time due to wavelet-related opera-
tions. The training and inference time could be shortened
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Figure 2: Additional qualitative results rendered by our WaveNeRF. The images are from the LLFF dataset [6]

NeRF Synthetic [7]
chair drums ficus hotdog lego materials mic ship

PSNR↑ 30.00 22.22 23.44 32.50 26.18 23.43 27.36 23.85
SSIM ↑ 0.963 0.897 0.906 0.965 0.932 0.898 0.957 0.826
LPIPS↓ 0.060 0.124 0.110 0.086 0.097 0.143 0.069 0.214

LLFF [6]
fern flower fortress horns leaves orchids room trex

PSNR↑ 23.16 27.25 29.09 25.36 19.10 18.68 28.33 23.26
SSIM ↑ 0.748 0.863 0.855 0.860 0.662 0.586 0.928 0.849
LPIPS↓ 0.249 0.147 0.146 0.184 0.258 0.313 0.160 0.240

Table 2: Quantitative results of our WaveNeRF on each scene of the NeRF Synthetic dataset [7] and the LLFF dataset [6] in
terms of PSNR↑, SSIM↑, and LPIPS↓.

with faster wavelet transform calculations or utilizing a tri-
plane structure to replace feature volumes. Note the training
time is not a crucial factor as the primary objective of this
work is a few-shot generalizable NeRF that requires no ad-
ditional training or fine-tuning for new scenes. Hence, we
can conclude that our method trains better few-shot gener-
alizable NeRF with a comparable budget to GeoNeRF.

Model Para.# Training Time Inference Time
GeoNeRF 1203485 86.1h 32s
WaveNeRF 1185058 125.05h 47s

2.5. Cross-dataset Generalization Ability

To evaluate the generalization ability of WaveNeRF, we
trained a new model solely using the DTU dataset [4] (i.e.,
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Figure 3: Additional qualitative results rendered by our WaveNeRF. The images are from the NeRF synthetic dataset [7]

WaveNeRF (DTU) shown in the table below) and evalu-
ated it on LLFF dataset [6]. Compared with DTU and
NeRF synthetic datasets [7], LLFF comprises more di-
verse and complex scenes with many non-centric objects,
posing strong inter-domain gaps. We compared WaveN-
eRF (DTU) with MVSNeRF, GeoNeRF, and our model in
the manuscript (all trained using LLFF). We can observe
WaveNeRF (DTU) obtains lower PSNR than WaveNeRF
due to domain gaps. However, WaveNeRF (DTU) still
achieves competitive performance as compared with MVS-
NeRF and GeoNeRF (trained using LLFF), demonstrating
the good generalization ability of WaveNeRF.

3. Ethical Consideration
The proposed model aims to synthesize novel view im-

ages from three-shot source views without any finetuning. It
could have a negative impact when it is used to boost illegal
3D data collection. Thus, some watermarking technologies
or detection methods [8] could be employed to identify the
synthesized 3D asset.
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