
Supplementary Material
NSF: Neural Surface Fields for Human Modeling from Monocular Depth

Abstract

In this supplementary document, we provide further de-
tails about the network, training procedure, and method.
We also report further results on per-outfit reconstruction,
unseen subject adaptation, multi-resolution, and real data.
Finally, we report timings for the method inference.

1. NSF: Implementation Details
1.1. Network Architecture

Implicit Fusion Shape For learning the implicit fusion
shape f shape, we follow the Auto-Decoder network archi-
tecture proposed in IGR [13], as described in sections A.1.
We depict it in Figure 1.

x

512 512 512

3+256

x

512 512 512

sd
f

1
FC+ FC+ FC+ FC+ FC+ FC+ FC

128 128 128
72

24

FC+ FC+ FC+

24
FC

3

Figure 1: Auto-Decoder architecture proposed in IGR [13].

FC is a fully connected linear layer and FC+ is the FC fol-
lowed by a softplus activation. We also use a skip connec-
tion from input to 4th layer. ϕshape is the subject-specific
latent vector. This network predicts the 1-dimensional SDF
value of given location x w.r.t. fusion shape of the specific
subject.
Global Pose Feature Given the pose parameter θ in SO(3),
we use an MLP to extract the global pose features. Here,
FC represents a fully connected layer, and FC+ has an ad-
ditional ReLU() layer and dropout layer with p = 0.3 after
each FC layer. This network extracts 24-dimensional global
pose feature from 72-dimensional pose parameters θ. We

visualize this in Figure 2.
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Figure 2: MLP to extract the global pose features.

Neural Surface Field Our proposed neural surface field
predicts the continuous pose-dependent displacement field
based on the subject-specific fusion shape with the Auto-
Decoder network reported in Figure 3.
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Figure 3: Auto-Decoder network for Neural Surface Field.

FC indicates fully connected layer. FC+ contains a FC
layer, a batch normalization layer, and a softplus activation
layer. Fs (xc) indicates the local feature at x on the feature
surface, which has the dimension of 64.

1.2. Training Details

The whole model is trained on a single Nvidia 2080-Ti
GPU with PyTorch deep learning framework [26]. We use
two separate ADAM optimizers [15] for network parame-
ters and the feature space. For both optimizers we use ini-
tial learning rate of 1e−4 scheduled to decrease by a factor
of 2 every 500 epochs. At the fine-tuning stage, we freeze
network parameters and only optimize the feature space.
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1.3. Evaluation Metrics

Chamfer Distance (CD) We report the bi-directional
square-root Chamfer distance (CD), which measures L2
distances between the reconstructed surface to the ground-
truth surface (lower is better). Given the reconstructed
shape and the ground-truth shape, we sample with 200, 000
points X and Y from them. We calculate the root mean
square bi-directional Chamfer distance with: 1
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where M , N are the number of points from the sampled
point cloud X and Y , respectively. The unit of reported
result in the paper is centimeter (cm).
Normal Consistency (NC) We also report the normal con-
sistency (NC), which measures the accuracy and the com-
pleteness of reconstructed shape normals (higher is better).
Following the notion in Eq. 1, we compute the bi-directional
normal consistency as
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where

ŷ = arg min
yj∈Y

d(xi,yj),

x̂ = arg min
xi∈X

d(xi,yj),
(3)

n(·) denotes the normal of the given point and d(x,y) the
L2 distance between point x and y.
Intersection Over Union (IoU) Volumetric intersection
over union (IoU) measures how well the the reconstructed
mesh matches the ground-truth mesh (higher is better). Fol-
lowing IF-Nets [7], we perform the implicit waterproofing
of ground-truth scan. We sample 200, 000 points X in the
bounding box of the ground-truth scan and query the occu-
pancy status of each sampled points in reconstructed shape
and the ground-truth shape. We compute the IoU with:

occpred(X) ∩ occgt(X)

occpred(X) ∪ occgt(X)
, (4)

where occpred is the occupancy query function w.r.t. pre-
dicted shape and occgt is the occupancy query function
w.r.t. ground-truth shape.

1.4. Baselines

Our baselines are PINA [10] and DSFN [4], which both
model clothed humans from monocular depth input. Al-
though the authors promised the code in their work, it is not

yet available at the time of writing. Hence, we perform a
quantitative comparison using results from respective orig-
inal papers and a qualitative comparison using meshes pro-
vided by them. Moreover, we apply two naive baselines,
namely SMPL [17] and our fusion shape. The fusion shape
can be understood as SMPL+D. It shows how our proposed
NSF learns the pose-dependent deformation.

1.5. SMPL Fitting

For the shapes without given SMPL registration (e.g.
BuFF [33] for synthetic data as well as DSFN [4] for real
data), we use a concurrent work based on LVD [8] to fit
the SMPL [17] model to the input point cloud. Moreover,
we use off-the-shelf methods [11, 31, 32] to estimate the
SMPL [17] parameters from RGB images. Since the esti-
mation from RGB images is always inaccurate in terms of
root rotation and leg poses, we use the RVH registration
library [1, 2, 3] to manually refine the SMPL fit with the
input point cloud. Finally, we choose the visually plausible
SMPL fit given the input point cloud.

2. NSF: Method Details
2.1. Extract Fusion Shape

Here we provide more detail in the learning of the canon-
ical fusion shape. For the outfit which can be described
by SMPL topology, we additionally fit SMPL+D using our
learned implicit fusion shape surface with:

min
D

f shape(X(SMPL+D)|ϕshape), (5)

where X(SMPL+D) denotes the sampled points from the
SMPL+D shape, f shape together with ϕshape indicates the
implicit fusion shape of the subject with outfit. We push
the sampled points lie on the zero-level set to obtain the
displacement of the SMPL surface. To ensure the smooth-
ness of the SMPL+D surface, we additionally minimize the
Laplacian of the optimized mesh [25].

Our learned fusion shape defines a coherent surface for
our proposed Neural Surface Field (NSF). We can fuse the
depth observation and texture from multiple partial shapes
onto this unifying surface. This enables us to learn the de-
formation and the texture in the NSF.

2.2. Texture Transfer on Fusion Shape

To transfer the texture color from the posed partial
shapes to the canonical fusion one, first We randomly select
10 partial shapes which could cover the most area of the
fusion shape. Then, we canonicalize (Eq.1 in main paper)
and project (Eq.2 in main paper) them to find the canoni-
cal correspondence on the fusion shape, as shown in Fig-
ure 5. Finally, we assign the color of each vertex on the fu-
sion shape from the nearest canonical points. We found that
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Figure 4: Texture transfer from colorful partial point cloud onto fusion shapes of multiple subjects in BuFF [27, 33] dataset. Fusion shapes
below are extracted using Marching Cube [18] with a resolution of 512, producing a mesh of around 90k vertices for each shape. We can
appreciate the preservation of fine details (e.g., the logo on the yellow t-shirt).

Ⓐ

Ⓑ

surface

Figure 5: For a given pose-dependent canonical point xc in R3,
we project it onto the fusion shape surface using the gradient (A)
and query the feature Fs(xcc) with barycentric interpolation of
basis features of nearest neighbors (B).

our texture transferring method produces a sharper texture
compared to the vertex-color optimization using all avail-
able partial shapes. We show the textured fusion shape of
subjects in BuFF [27, 33] dataset in Figure 4.

2.3. Surface-based Feature Query

We use the vertices of our learned fusion shape to form
the basis of the surface-based feature space. As introduced
in Eq. 6 in the main paper, we can lift the neural surface fea-
ture from xcc, Fs(xc) ← Fs(xcc) with the surface projec-
tion. To obtain the Fs(xcc), we use Kaolin [12] to estimate
the barycentric coordinate w.r.t. three vertices of the cor-
responding triangle and interpolate features of three vertex
features using the barycentric weights.

3. Further Results
3.1. Per-Outfit Reconstruction Result

To prove the effectiveness of having a single general de-
coder for all the outfits, we also train outfit-specific ones and
compare ourselves. We report the per-outfit reconstruction
quantitative results of our method in Table 1. Our generaliz-
able decoder achieves better reconstruction quality on every
single outfit, and so also on avarage. We remark that our
decoder uses 1

9 of the parameters compared to the per-outfit
training strategy.

3.2. Adapt to Unseen Subject

Here we study the method performance using a varying
number of frames during the adaptation of surface-based
features of unseen subjects. It shows that our method can
reconstruct the given partial shape well using the only 10
frames. Besides, the more frames used to fine-tune, the
more the model generalizes to the unseen poses.

Operation
BuFF Data [33]

Seen Frames Unseen Poses
CD ↓ NC ↑ IoU ↑ CD ↓ NC ↑ IoU ↑

10 Frames 0.75 0.920 0.894 1.16 0.876 0.835
20 Frames 0.75 0.919 0.894 1.05 0.899 0.857
50 Frames 0.77 0.918 0.890 0.93 0.915 0.876

Table 2: Our model can be quickly adapted to unseen subjects
by only fine-tuning the surface-based feature space with limited
number of partial shapes. We use different splits from the one
used in the main, thus the quantitative number here varies from
Table 3 in main paper.

3.3. Multi-resolution Flexibility

Our proposed approach has high flexibility to generate
desired mesh resolution and topology. We represent our fu-
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Decoder Type # Decoder Subject Garment
CAPE Data [21, 27, 33]

CD (cm) ↓ NC ↑ IoU ↑ CD (cm) ↓ NC ↑ IoU ↑
Mean Value Median Value

Outfit-specific 1 00122 shortlong 0.58 0.941 0.919 0.52 0.946 0.928
Generalizable / 00122 shortlong 0.52 0.952 0.935 0.46 0.957 0.946
Outfit-specific 1 00122 shortshort 0.65 0.922 0.906 0.66 0.922 0.904
Generalizable / 00122 shortshort 0.62 0.933 0.915 0.63 0.933 0.911
Outfit-specific 1 00215 jerseyshort 0.49 0.949 0.934 0.49 0.948 0.933
Generalizable / 00215 jerseyshort 0.46 0.956 0.944 0.47 0.955 0.943
Outfit-specific 1 00215 poloshort 0.70 0.935 0.904 0.65 0.938 0.911
Generalizable / 00215 poloshort 0.62 0.945 0.920 0.56 0.948 0.929
Outfit-specific 1 00215 shortlong 0.63 0.927 0.910 0.60 0.929 0.914
Generalizable / 00215 shortlong 0.58 0.941 0.925 0.57 0.943 0.924
Outfit-specific 1 03375 blazerlong 0.83 0.897 0.882 0.79 0.896 0.883
Generalizable / 03375 blazerlong 0.77 0.926 0.894 0.73 0.928 0.897
Outfit-specific 1 03375 longlong 0.86 0.899 0.872 0.76 0.906 0.886
Generalizable / 03375 longlong 0.79 0.931 0.890 0.71 0.937 0.904
Outfit-specific 1 03375 shortlong 0.81 0.919 0.878 0.76 0.919 0.883
Generalizable / 03375 shortlong 0.72 0.939 0.898 0.66 0.938 0.905
Outfit-specific 1 03375 shortshort 0.86 0.907 0.871 0.83 0.906 0.873
Generalizable / 03375 shortshort 0.79 0.933 0.887 0.77 0.933 0.886
Ours, Outfit-specific 9 3 subjects 9 outfits 0.71 0.922 0.897 0.67 0.912 0.902
Ours generalizable 1 3 subjects 9 outfits 0.65 0.940 0.912 0.62 0.941 0.916

Table 1: We evaluate our method on the task of reconstructing 3D shapes from monocular depth point clouds on CAPE [21, 27, 33] data.
We compare the outfit-specific decoders against our general one for all outfits. We appreciate the better performance of our choice in all
the settings and metrics.

sion shape as an implicit neural signed distance field (SDF),
which let us extract an arbitrary resolution and mesh for the
fusion shape. For instance, we can obtain fusion shape in
SMPL [17] topology using Eq. 5. Also, we can instead ap-
ply Marching cube [18] and decide the resolution level. Our
texture transfer approach reported in Sec. 2.2 is also flexi-
ble to different fusion shapes; we report in Figure 6 textured
fusion shape discretized at different resolutions.

Our proposed Neural Surface Field formulates a contin-
uous pose-dependent displacement field. Thus, our NSF
maintains flexibility and can generate a posed mesh with
arbitrary resolution and topology in reconstruction and an-
imation tasks. In Figure 8, we show the different recon-
structed mesh of a partial shape using our NSF.

3.4. Real Data Experiments

We show more qualitative reconstruction result of real
data in DSFN [4] dataset in figure 9.

3.5. Inference Time Per Frame

We use the edge connectivity of our extracted fusion
shape on the deformed vertices with NSF Vp (see sec. 3.5
in the main paper) to generate the posed mesh. Our for-
mulation is much more efficient compared to other works
since we get rid of per-frame Marching cube [18] as

in [5, 6, 9, 23, 24, 29, 30] or per-frame Poisson reconstruc-
tion [14] as in [16, 19, 20, 22]. X-Avatar [28], a concurrent
work based on SNARF [6], reports 7 seconds per frame as
inference time which include remeshing via Marching cube
on Nvidia RTX6000. In our proposed method, we report
an average time of 0.039 seconds per frame, including de-
formation prediction, Linear Blend Skinning, and remesh-
ing on RTX3080-Ti. which is ∼ 180 times faster than X-
Avatar [28]. Furthermore, we compare the inference time
with point-based works POP [22], which requires Poisson
reconstruction to obtain mesh from point cloud for each
frame. In the same setting, POP requires about 1.6 seconds
to reconstruct the surface at each frame. Our approach is ∼
40 times faster.
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b) Subdivided SMPL resolutiona) Marching Cube low resolution b) Original SMPL resolution b) Marching Cube High resolution

Resolution

Figure 6: We show the textured fusion shape with different resolution and topology: (a) Marching cube with resolution of 128, ∼ 5k
vertices; (b) SMPL+D topology, ∼ 7k vertices; (c) subdivided SMPL+D topology, ∼ 27k vertices; (d) Marching cube with resolution of
512, ∼ 86k vertices.
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DSFN - Andrei Resynth - Anna Rsynth - Fiona Resynth - Janett

Figure 7: Learned fusion shapes of subjects from BuFF [33, 27] (1st row), CAPE [21, 27] (2nd row), DSFN [4] (left on 3rd row),
Resynth [22, 20] (3 right on 3rd row).
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