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A. Computation Details

To facilitate a wide range of readers, we introduce some
computation details in this section.

A.1. Evidence Lower Bound (ELBO)

We use evidence lower bound (ELBO) [13] in Equation
1. To deduce the ELBO, we have
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by using Jensen’s Inequality. Then, we have
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A.2. KL Divergence between Gaussian Distribu-
tions

We use KL divergence between two Gaussian distri-
butions in Equation 3. Denote ¢(F) = q(F|E') =
N(pg, Xp) and p(F) = p(F|E*) = N(pg., Zp-) for

simplicity, the KL divergence can be deduced as follows:
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where d is the dimension of F' and I, is a identity matrix
of size dy.

A.3. Normalized Weighted Geometric Mean
(NWGM)

We wuse Normalized Weighted Geometric Mean
(NWGM) [2] in Equation 14. For simplicity, we denote
x = [F|Ty] and f(x) = LN(x)W, which is a linear
transformation. Then, from the results in [2, 11] that
Erlsoftmaz(f(x))] = NWGM|[f(x)], we have

Ep{p(A|M, F)} = Ep[softmaz(f(z))]
~NWGM|[f(x)] = softmax(Er{f(x)})

—softmaz(f(Ep{z})) = softmax(f([E{F}|T,)))

=softmaz(f([pg|To])),

(20)

where we use Er{f(x)} = f(Er{x}) since f is a linear
transformation.




B. Correlation of Objectives Proposed in Sec-
tion 4.1 and Section 4.2

We describe the optimization objectives in a causal per-
spective in Section 4.1 and deduce objectives by variational
inference in Section 4.2. In this section, we indicate the
objectives proposed in Section 4.1 and Section 4.2 are con-
sistent.

The objectives proposed in Section 4.1 are as follows:

0, = argmin —P(E = E'|M)P(A=A'|M,E = E')
Oy = argmin KL(P(F|E")|P(F|E")).
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The objectives proposed in Section 4.2 are as follows:

Lans = argmin —Ey g g [log p(A'| M, F)]
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Leyp =argmin —log p(E'|M).

Therefore, we have
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Therefore, the objectives deduced in Section 4.2 are consis-
tent with the objectives proposed in Section 4.1.

C. Comparisons of Experimental Details

As VQA is a sub-task in our work but we follow the ex-
perimental protocol of EVQA [3], it is important to clar-
ify the differences in experimental details compared to prior
VQA studies conducted on the GQA dataset, which is ex-
tended to GQA-REX dataset in EVQA.

C.1. Difference in Data Split.

In training, we use the balanced GQA-REX training set
(of 912,934 samples), which is slightly smaller than the
balanced GQA training set (of 943,000) as samples with-
out explanations are removed. In validation, we use the
balanced GQA-REX validation set (of 127,900 samples),
which is also slightly smaller than the balanced GQA vali-
dation set (of 132,062) as samples without explanations are
removed. In test, we use the standard GQA-REX test set
(of 11,183,447 samples), which is identical to the standard
GQA test set.

However, prior VQA studies may not use the balanced
GQA training set for training. For instance, LXMERT [10],
which is used as the backbone in our model, is finetuned
on the standard (or named all) training set (of 14,305,356
samples) plus the standard validation set (of 2,011,853 sam-
ples) of GQA. Therefore, it is unfair to directly compare the
answering accuracy of LXMERT and ours though our test
accuracy is higher than LXMERT’s. Similarly, state-of-the-
art VQA methods are typically trained on the standard GQA
training set or standard GQA training + validation set, such
as CFR [8], DPT [7], VinVL [16], TRRNet [14], and OS-
CAR [5].

C.2. Difference in Visual Objects.

We follow REX [3], TRRNet [14], and LXMERT [10]
to extract 36 objects in every image by pretrained Faster
R-CNN. The file of extracted features is identical to that
used by REX and LXMERT. However, some VQA methods
also use pretrained Faster R-CNN but extract 50 objects in
every image, such as CFR [8], DPT [7], VinVL [16], and
OSCAR [5]. It is not surprising to find using more objects
can usually improve the answering accuracy.
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Explanation: Because #1
that #0 is looking at is kite.
Answer: kite

(a) An example in GQA-REX dataset (b) Image segmentation in GQA-REX
Figure 1. Task definition in GQA-REX dataset.

D. Consistency Metric

In this section, we introduce motivation and computa-
tion details of our proposed Consistency (Con.) metric on
GQA-REX dataset. As an example shown in Figure 1 (a),
we can find that the explanation is consistent with the an-
swer because it directly contains the answer “kite”. Moti-
vated by this finding, we have analyzed the whole GQA-
REX dataset to dig out whether the answer always occurs
in the explanation. We have finally found that except for
two special kinds of questions, the answer or related di-
rection token always occurs in the explanation. The first
kind is asking for yes or no, such as “(qid = 07452748)
Question: Is the cheese to the left of the food on the
plate? Explanation: Because #9 is to the left of #1. An-
swer: yes”. The second kind is asking for the common
attribute of two objects, such as “(qid = 00226745) Ques-



Explanation Because #21 is | Because middle | Because #33is | Because #35 is t]::i?uhsfo#fl#go4 Because #26 is hileiiusf)f#z#;9
p 0 parrot. #14 is blue. located at (@5. located at @8. 8 to the left of #0. eme
is table. is lamp.
Answer parrot blue left right table left chandelier
Con. 1 1 1 1 1 1 0
Because #8 to Because black | Because yellow | Because #3 in Because #10 Because there is [ Because both
Explanation | the right of #33 | #23 is located at | #30 is located at | front of #8 is that #1 is #24 is brown | #34 and #16 are
is pepper. @12. @]1. woman. behind is cow. and old. wood.
Answer cucumber left right girl horse yes material
Con. 0 0 0 0 0 excluded excluded

Figure 2. Examples of computing our proposed Consistency (Con.) metric. Consistent tokens in explanations with corresponding answers

are colored green. The answers (€ B) of excluded types of samples are colored red.

tion: What do the box and the taxi have in common? Ex-
planation: Because both #5 and #33 are white. Answer:
color”. Fortunately, only answers to the above two kinds of
questions are in B = {yes, no, color, material, shape}.
Therefore, we exclude these two kinds of questions while
computing Con. by checking the ground truth answers of
questions. Moreover, in GQA-REX, every image is seg-
mented into 16 regions as shown in Figure 1 (b). There-
fore, an answer of “left” or “right” can relate to to-
kens in L = {Ql,@Q2,Q5,Q@6,Q@9,Q10,Q13, @14} or
R = {@3,Q4,@7,@8,Qll,Q12,Q15,Q16} in the ex-
planation. For example, “(qid = 07159849) Question: On
which side of the image is the black backpack? Explana-
tion: Because black #32 is located at @1. Answer: left”.

Motivated by the above findings, we calculate Con. of a
single sample as follows:

E. Implementation Details

We adopt mini-batch Adam [4] optimizer to optimize
VCIN. The mini-batch size is 128 and the initial learning
rate is le-5 for all trainable parameters. The dimensions
ds, dg4, and d, of hidden units are set as 768. We take
the multi-head trick for all attention layers with the head
number 4. We set the number L of Transformer layers as 2
and the maximum length 7" of explanations as 18. The MC
sampling number H is set as 4. The whole model is imple-
mented by Pytorch and trained on two Tesla V100 GPUs.

F. Additional Experiments

Due to the space limitation, we include more experi-
ments in this section.
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where A and E are predicted answer and explanation, and
we only compute Con. of samples of which the ground truth
answers are not in B. To verify whether Con. can precisely
reflect the consistency correlation, we computed Con. of the
ground truth annotations on GQA-REX, which is 99.85%.
We have carefully checked the samples of which Con.=0
and found it is due to annotation mistakes in the dataset.
Therefore, the ground truth supports the rationality of Con.
metric. In experiments, we report the average Con. score
on GQA-REX validation set.

In Figure 2, we show various examples of computing
Con. on real results predicted by REX and VCIN.

number H.

F.1. Hyper-parameter Analysis

In this section, we analyze the sensitivity of Monte Carlo
sampling number H in Equation 15, which is set as 4 by
default. We vary H in {1,2,4,8,16,32,64} and report the
performance of VCIN under the same training settings. As
shown in Figure 3, the performance of VCIN slightly im-
proves when H increases from 1 to 4, and becomes sta-
ble when H increases even larger. These results show our
VCIN does not rely on large H, which significantly reduces
the training costs. This is because samples per class in train-



ing (gfégi‘l ~ 500) is sufficient and several epochs of train-

ing with H = 4 can effectively eliminate the bias brought
by Monte Carlo sampling.

Table 1. Performance comparisons among causal models on GQA-
REX. The best results are highlighted in bold.

Model BLEU-4 METEOR CIDEr Grounding GQA-val Con.
REX-LXMERT| 54.79  39.51 466.01 70.79 78.19 84.90
REX-CF-LMT| 54.61  39.63 468.68 70.66 79.29 84.97

VCIN 58.65 41.57 519.23 77.33 81.80 93.44

G. Comparisons to Existing Causal VQA

Since causal inference has been already studied for
VQA, we clarify the difference between existing causal
VQA methods and our VCIN in this section.

Existing causal VQA methods [1, 6, 12, 9, 15] focus on
eliminating biased dependency (aka, spurious correlations)
in learning to improve the accuracy of question answering.
For instance, Agarwal et al. [1] propose automated seman-
tic image manipulations to alleviate spurious correlations
while learning. Niu et al. [9] propose a counterfactual in-
ference framework to capture and mitigate language bias in
VQA. Yang et al. [15] propose a causal attention mech-
anism to reduce the confounding bias which can mislead
attention modules.

Differently, our proposed variational causal inference
aims at establishing the causal correlation between the pre-
dicted answers and explanations to improve the answer-
explanation consistency. Furthermore, as we have analyzed
in Experiments, since our model can utilize the explanation
information for answer prediction, the answering accuracy
is also improved. Due to the huge difference of considered
problems, our VCIN can also be integrated with the existing
causal VQA methods, which can be left to future work.

In Table 1, we show the results of REX-CF-LMT that
is built by applying CF-VQA [9] to REX-LXMERT. We
can observe that while REX-CF-LMT improves answering
accuracy (GQA-val), it cannot improve the quality of gen-
erated explanations or the answer-explanation consistency.
Therefore, CF-VQA does not solve the problem of effective
and credible reasoning for EVQA

H. Limitations

One of our major limitations is that we do not handle
the bias existing in the dataset, which has been found in
previous work [9, 15] and may affect the generalization of
models.
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