
Supplementary material for FCCNs: Fully Complex-valued Convolutional
Networks using Complex-valued Color Model and Loss Function

1. Complex-valued Cross Entropy Loss
Recall how we derived our complex-valued loss fcomp :

CH×W×3 → Cc from the original cross-entropy loss,
which is given as:

Lcomp = − 1

n

n∑
j=1

c∑
k=1

yjk log zjk (1)

where zjk is the complex-valued output, and yjk is the
ground truth label (with phase equal to 0). To establish the
differentiability of this loss, we must ensure the differentia-
bility of the function log zjk, which is the logarithm of a
complex number.

Let f(z) = log(z), where z = a + ib. Note that if
f(z) can be expanded to a complex form u(a, b) + iv(a, b),
for it to be differentiable, it must satisfy Cauchy-Riemann
equations[2], which are given as:
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Let’s prove that logarithm of a complex number satisfies
these equations.

Proof: Given function f(z) = log(z), where z ∈ C, i.e.,
z = a+ ib, we can compute the magnitude |z| and phase θ
of z as follows:

|z| =
√
a2 + b2 equa and 1234 θ = tan−1(b/a)

Since z = |z|eiθ, using above equations, we can expand
log(z) into a complex form in the following manner:

log(z) = (1/2) log(a2 + b2) + i tan−1(b/a) (3)

Thus, u = (1/2) log(a2 + b2) and v = tan−1(b/a).
Now, let’s compute the four partial derivatives required in
Cauchy-Riemann equations 2:
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From the above equations, we can conclude that the
logarithm of a complex number indeed satisfies Cauchy-
Riemann equations 2. Hence, log(z) is differentiable, and
so is our proposed loss Lcomp.

2. Addition Observations

Table 1. Transfer learning experiment on Modern Office-31 dataset
Modern Office-31 DCN[3] CNN[1] FCCN

Accuracy 93.71 96.61 97.23

For observing the generalization capability of our
method, we show results on Finetuned ResNet152, which
was pre-trained on ImageNet on webcam subset of Modern
Office-31 dataset. We show our results for different meth-
ods in Table 1.
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