
Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
– Supplementary Material

We provide additional descriptions of pre-training details
in Section 1, and downstream task details in Section 2. We
discuss hypothetical concerns in Section 3. We present more
experiment results and analysis in Section 4, and proof of
propositions in Section 5.

1. Pre-training Details
1.1. Scene Data Generation

To prepare the data for scene-level pre-training, we pre-
process the point clouds from ScanNet dataset [2]. We
utilize the sliding window strategy and crop each scene
instance into d× d× d point cloud cubes, where d = 3.0 m.
Consistent with Qi et al. [6], we divid the dataset into training
(consisting of 8k point clouds) and validation (consisting of
2.6k point clouds) splits. We randomly sub-sample 10,000
points from each point cloud to use as input to the encoder.

Given the lack of high-quality water-tight meshes, we em-
ploy the k-nearest neighbor (KNN) strategy [5] to calculate
ground-truth unsigned distance functions. Specifically, for
each sample point x, we use the KNN algorithm to find the
three nearest points from the point cloud and calculate the
average distance as the unsigned distance value.

1.2. Decoder Details

As mentioned in Section 4.2 of the main body, the IAE
encoder maps a given point cloud into a high-dimensional
code, and the decoder fits an implicit function that converts
the latent code and a query point to an implicit function
value. We explore two different designs for the decoder:
the Occupancy Network style [3] and the Convolutional
Occupancy Network style [4].
Occupancy Network style: We use a fully-connected neural
network with five ResNet blocks to implement the decoder,
taking the latent code from the encoder and the sample point
x as input. For detailed information, please refer to [3].
Convolutional Occupancy Network style: First, we decode
the latent code from the encoder to a volumetric feature
representation. Then, we use trilinear interpolation to obtain
the feature of the sample point x. Next, we use a small
fully-connected occupancy network to predict the implicit
function value, which comprises multiple ResNet blocks.

Please refer to [4] for further details.

1.3. Training Details

We implement all models in PyTorch and use the Adam
optimizer without weight decay. The learning rate is set to
10−4 for all datasets. We use standard data augmentation
techniques proposed by [13] for both ShapeNet and ScanNet
pre-training. For ShapeNet, we pre-train the models for 600
epochs. For ScanNet, we pre-train the models for 1,000
epochs.

2. Downstream Task Details
After pre-training, the pre-trained encoder is transferred

to downstream tasks.

2.1. Shape Classification

We respectively sample 1,024 and 2,048 points from
each 3D shape in ModelNet40 [12] and ScanObjectNN [8]
and utilize the 3-channel coordinates as input. The same
training settings are adopted for the two datasets. For the
DGCNN [11] backbone, we fine-tune the network for 200
epochs with a batch size of 32 and set the learning rate as
1×10−3 with a weight decay of 5×10−1. For the M2AE [14]
backbone, we fine-tune the network for 300 epochs with a
batch size of 32 and set the learning rate as 5× 10−4 with a
weight decay of 5× 10−2.

2.2. 3D Object Detection

We replicate the settings used in the original paper. To
train VoteNet [6], we fine-tune the network using an Adam
optimizer with a batch size of 8 and an initial learning rate
of 0.001. After 80 epochs, we reduce the learning rate by a
factor of 10 and then again by another factor of 10 after 120
epochs.

To train CAGroup3D [9] on both ScanNet and SUN RGB-
D datasets, we set the batch size, initial learning rate, and
weight decay to 16, 0.001, and 0.0001, respectively. For
ScanNet, we fine-tune for 120 epochs and reduce the learning
rate by a factor of 10 at the 80th epoch and again at the 110th

epochs. For SUN RGB-D, we fine-tune for 48 epochs and
reduce the learning rate at the 32th and the 44th epochs.

Sample 1

Sample 2

Target 1

Target 2

Explicit Autoencoder

Sample 1

Sample 2

Target

Implicit Autoencoder

Figure 6: Comparison between Explicit Autoencoder and
Implicit Autoencoder. Given a 3D shape, we randomly take
two samples. For Implicit Autoencoder, we use 3D CAD model to
represent the implicit function target for better visualization.

2.3. Indoor 3D Semantic Segmentation

We present the evaluation of our model on the S3DIS
dataset using 6-fold cross-validation [1]. We replicate the
settings in the original paper for consistency.

To train the DGCNN model, we adopt a batch size of 32
and an initial learning rate of 1 × 10−1 using a stochastic
gradient descent optimizer. We reduce the learning rate
gradually until it reaches 0.001 using cosine annealing.

For the PointNeXt [7] model, we select the PointNeXt-XL
version and fine-tune it with an AdamW optimizer, where
the weight decay is 10−4, the initial learning rate is 0.001,
and the batch size is 32. We use the cosine annealing method
to reduce the learning rate during training.

3. Discussion
3.1. What is the difference between data augmenta-

tion and sampling variation?

Sampling variation refers to the fact that different point
cloud samples of the same 3D shape contain different noises
induced from various sources, such as intrinsic noises from
sensors and interference from the environment. In the
explicit autoencoding paradigm, the encoder is required
to encode not only the 3D geometry but also information
about the specific discrete sampling of the 3D shape into
the latent code, which can lead to sampling variation. This
is because the decoder must reconstruct a point cloud that
matches the original point cloud perfectly. For example,
as shown in Figure 6, given a 3D shape and two randomly
selected samples, the explicit autoencoder forces the decoder
to output the same sample as the input. If the target sample
changes, the loss increases due to incorrect mapping, even
though the different samples represent the same shape. Thus,
the explicit autoencoding paradigm must learn the mapping
that includes sampling variation. In contrast, the implicit
autoencoder does not face this problem because different
samples map to the same target, which is the implicit
representation of the 3D shape.

(a) Random (b) FoldingNet (c) OcCo (d) IAE(ours)

Figure 7: Visualization of learned features. We visualize
the learned features for each sample in ModelNet10 using
t-SNE. All the models use DGCNN as the encoder backbone.
(a) uses random initialization. (b), (c), (d) are pre-trained on
ShapeNet.

Data augmentation is a standard technique for point-cloud
learning, including rotation, translation, scaling, and sub-
sampling. As mentioned in the supplement’s Section 1.3,
IAE uses all of these standard data augmentation methods
during pre-training, as other approaches do. For instance,
IAE uses different sub-samples of the same 3D shape as
input, but all of these sub-samples share the same target,
which is the implicit function of the 3D shape.

3.2. Is it a fair comparison with existing self-
supervised learning approaches?

In this subsection, we discuss the fairness of the compar-
ison between the Implicit Autoencoder (IAE) and existing
self-supervised learning approaches. Our approach differs
from existing methods in that we use dense point clouds (50k
points) or mesh data from ShapeNet to generate the implicit
function label, while existing approaches utilize sparse, sub-
sampled point clouds (i.e., 1k ∼ 2k points) for pre-training.
We argue that the point of pre-training is to extract as much
information as possible from all available data. Therefore,
it is natural to include dense point clouds or mesh data in
the pre-training dataset. However, explicit autoencoders lack
the ability to efficiently exploit the density, as demonstrated
in the experiment analysis in Section 4.5 of the main paper.
Hence, we consider our approach to have an advantage rather
than an unfair comparison.

We also emphasize that we use the same setting as
existing self-supervised learning approaches for downstream
task training to ensure a fair comparison. Therefore, we are
confident that the comparison between our approach and
existing approaches is fair.

4. More Results
4.1. Embedding Visualization.

We visualize the learned features of our model and
baseline approaches in Figure 7. We compare with
FoldingNet [13], OcCo [10], and a sanity-check baseline,
random initialization. Random initialization use randomly
initialized network weights to obtain the embedding, and its
performance explains the network prior. The embeddings

for different categories in the ModelNet10 dataset are shown
using t-SNE dimension reduction. Empirically, we observe
that our pre-trained model provides a cleaner separation
between different shape categories than FoldingNet [13],
OcCo [10], and random initialization.

5. Proof of Propositions

Denote

X = (x1, · · · ,xN), X ′ = (x′
1, · · · ,x′

N).

To obtain closed-form expressions of the linear auto-
encoding problem, we reformulate the optimization problem
as

min
R,B∈Rn×m,RTR=Im

N∑
k=1

∥RBTx′
k − xk∥2 (9)

The following proposition specifies the optimal solution
to (9).

The optimal solution (R⋆, B⋆), R,B ∈ Rn×m to (9) sat-
isfies that the columns of R⋆ are the leading m eigenvectors
with the largest eigenvalues of

(X ′X)T (X ′X ′T)+(X ′XT).

Moreover,

B⋆ = (X ′X ′T)+(X ′XT)R⋆.

Proof. Denote R = (r1, · · · , rm) and B = (b1, · · · , bm).
Then

N∑
k=1

∥RBTx′
k − xk∥2 (10)

=

N∑
k=1

(
x′
k
T
BBTx′

k − 2(RTxk)
T (RTx′

k) + ∥xk∥2
)

=

N∑
k=1

(m∑
j=1

(
(bTj x

′
k)

2 − 2(rTj xk)(b
T
j x

′
k)
)
+ ∥xk∥2

)

=

m∑
j=1

(
bTj

(N∑
k=1

x′
kx

′
k
T)

bj − 2(

N∑
k=1

x′
kxk

Trj)
T bj

)

+

N∑
k=1

∥xk∥2 (11)

Therefore, define

{b⋆j , 1 ≤ j ≤ m} = argmin
bj

N∑
k=1

∥RBTx′
k − xk∥2.

Since bj lies in the column space of X ′, it is clear that the
optimal solution b⋆j is given by

b⋆j =
(N∑

k=1

x′
kx

′
k
T
)+(N∑

k=1

x′
kxk

T
)
rj

= (X ′X ′T)+(X ′XT)rj , 1 ≤ j ≤ m. (12)

Substituting (12) into (10), we have that the objective
function becomes

N∑
k=1

∥RB⋆Tx′
k − xk∥2

=

m∑
j=1

rT
j

(
XX ′T

)(
X ′X ′T

)+(
X ′XT

)
rj

− 2

m∑
j=1

qT
j

(
XX ′T

)T(
X ′X ′T

)+(
X ′XT

)
rj +

N∑
k=1

∥xk∥2

=−
m∑

j=1

rT
j

(
X ′XT

)T(
X ′X ′T

)+(
X ′XT

)
rj +

N∑
k=1

∥xk∥2

(13)

Therefore, the optimization problem in (9) reduces to

max
R∈Rn×m,

RTR=Im

Trace
(
RT

(
X ′XT

)T(
X ′X ′T

)+(
X ′XT

)
R

)
(14)

It is easy to see that the optimal solution R⋆ = (r⋆1 , · · · , r⋆m)
to (9) satisfies that r⋆i , i ∈ [m] are the leading m eigenvectors

of CX′,X :=
(
X ′XT

)T(
X ′X ′T

)+(
X ′XT

)
.

5.1. Proof of Proposition 1

We show that when ϵk ∈ {L }⊥ , k ∈ [N],

R⋆ = B⋆ = Q.

Therefore, the formulation of (1) is identical to that of (9).
In fact, consider the singular value decomposition (SVD) of

X ′ = UΣV T .

First,

XTX =XTX ′

=XTUΣV T .

Therefore, V is an orthonormal basis of the column space of
XT . This means we can write out the SVD of X = U ′Σ′V T .
Again using XTX = XTUΣV T , we have

V Σ′2V T = V Σ′U ′TUΣV T .

It follows that
Σ′2 = Σ′U ′TUΣ.

In other words,

U ′Σ′ = UΣ.

This means we can arrange the SVD of X so that

U ′ = U,Σ′ = Σ.

We proceed to show that (XX ′T)(X ′X ′T)+(X ′XT) =
XXT . In fact,

(XX ′T)(X ′X ′T)+(X ′XT)

= XV ΣUT
(
UΣV TV ΣUT

)+
(UΣV TXT)

= XV ΣUT
(
UΣ2UT)+(UΣV TXT)

= XV ΣUTUΣ−2UTUΣV TXT

= XV V TXT

= XV ΣUT (UΣ−2UT)UΣV TXT

= XV ΣUT (UΣ2UT)+UΣV TXT

= XXT (XXT)+XXT = XXT .

Moreover,

(X ′X ′T)+(X ′XT)

= (UΣV V TΣUT)+(UΣV TV ΣU)

= (UΣ2UT)+(UΣ2U)

= In.

5.2. Proof of Proposition 2

Let us first consider the case where the corresponding
eigenvalues of Q are distinctive. Let qj ,m + 1 ≤ j ≤ n
expand the columns of Q to form an orthonormal basis of Rn.
In this case, applying the derivative formula of eigenvectors
to each eigenvector and the fact that ϵk ∈ {L }⊥, we obtain

dqi = −
∑
j ̸=i

qT
j

N∑
k=1

(xkϵ
T
k + ϵkx

T
k)qi

λj − λi
qj (15)

= −
m∑

j ̸=i,j=1

qT
j

N∑
k=1

(xkϵ
T
k + ϵkx

T
k)qi

λj − λi
qj (16)

−
n∑

j=m+1

qT
j

N∑
k=1

(xkϵ
T
k + ϵkx

T
k)qi

λj − λi
uj

= −
n∑

j=m+1

qT
j

N∑
k=1

ϵkx
T
k qi

λj − λi
qj

=
(n∑
j=m+1

qjq
T
j

)(N∑
k=1

ϵkx
T
k

)
qiλ

−1
i (17)

=
(
In −QQT

) N∑
k=1

ϵkx
T
k qiλ

−1
i . (18)

It is easy to check that

dqT
i qi = 0 1 ≤ i ≤ m

dqT
i qj + dqT

j qi = 0 1 ≤ i ̸= j ≤ m

Therefore, QT Q̂⋆ ≈ I2 up to second-order errors
O({∥ϵ2k∥}). Therefore, the rotation matrix used to calibrate
Q̂⋆ and Q when defining D(Q̂⋆, Q) is the identity matrix up
to second-order errors O({∥ϵ2k∥}). Applying (18), we have

∂ {D } (Q̂⋆, Q)

∂ϵki

=
(
In −QQT

) (
ekx

T
k q1λ

−1
1 , · · · , ekxT

k qmλ−1
m

)
= (In −QQT)ekx

T
kQΛ−1.

The proof under the case where the eigenvalues of Q are
repeating is similar, except that the summation in (15) shall
discard (i, j) pairs where λi = λj . On the other hand,
the uncertainties in eigenvectors when having repeating
eigenvalues are addressed by the calibration rotation matrix
in D(Q̂⋆, Q).

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang,

Ioannis Brilakis, Martin Fischer, and Silvio Savarese. 3d
semantic parsing of large-scale indoor spaces. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1534–1543, 2016.

[2] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 5828–5839, 2017.

[3] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019.

[4] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020.

[5] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883,
2009.

[6] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.
Deep hough voting for 3d object detection in point clouds. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9277–9286, 2019.

[7] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with
improved training and scaling strategies. arXiv preprint
arXiv:2206.04670, 2022.

[8] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1588–
1597, 2019.

[9] Haiyang Wang, Lihe Ding, Shaocong Dong, Shaoshuai
Shi, Aoxue Li, Jianan Li, Zhenguo Li, and Liwei Wang.
Cagroup3d: Class-aware grouping for 3d object detection
on point clouds. arXiv preprint arXiv:2210.04264, 2022.

[10] Peng-Shuai Wang, Yu-Qi Yang, Qian-Fang Zou, Zhirong Wu,
Yang Liu, and Xin Tong. Unsupervised 3d learning for shape
analysis via multiresolution instance discrimination. ACM
Trans. Graphic, 2020.

[11] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019.

[12] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.

[13] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018.

[14] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-m2ae:
multi-scale masked autoencoders for hierarchical point cloud
pre-training. arXiv preprint arXiv:2205.14401, 2022.

