SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training
Supplementary Material

This supplementary material will further detail the fol-
lowing aspects of the submitted manuscript: A. Experimen-
tal Implementation Details, B. More Verification, C. More
Visualization Results, D. Spatial Modeling Method, E. Sup-
plementary Experiments.

A. Experimental Implementation Details

In this section, we will introduce the details of the experi-
mental application. Firstly, our SkeletonMAE is pre-trained
by an Adaptive Moment Estimation (Adam) [4] optimizer
with the initial learning rate as 1.5 x 10~* and the PReL.U
[3] as an activation function. The batch size is 1024 and the
training epoch is 50. And we will set the mask body part
for pre-training. Furthermore, the input feature dropout is
0.2 and the attention dropout is 0.1. At the fine-tuning stage,
we use the Stochastic Gradient Descent (SGD) [ 1] with mo-
mentum (0.9) and adopt the warm-up strategy for the first 5
epochs. The weight decay for the optimizer is 0.005. The
total fine-tuning epoch is 110. The learning rate is initial-
ized to 0.1 and is divided by 10 at the 90 epoch and the 100
epoch. We employ 0.1 for label smoothing and the number
of workers for data loader is 4. We use a large batch size
of 128 to facilitate training our attention mechanism and
enhancing the model’s perception for all human action cat-
egories. Both our pre-training and fine-tuning models are
implemented in PyTorch 1.9.1 [6], and we train our mod-
els on a single NVIDIA GeForce RTX 2080Ti 11GB GPU
with CUDA 11.1. The number of parameters of our Skele-
tonMAE model is about 1.5M. Compared to previous self-
supervised pre-training models [8, 7, 2], our model is more
light-weighted.

B. More Verification

As shown in Fig. 1, both PCA and t-SNE are promis-
ing dimensionality reduction methods commonly used for
feature visualization. In Fig. 2, we show the distribu-
tion of the difference between the average accuracy of all
categories and the accuracy of each category. We try to
briefly illustrate the effectiveness of the pre-trained Skele-
tonMAE encoder proposed in this paper through accuracy
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Figure 1. (a) and (b) are visualisations by 2d-PCA and t-SNE on
FineGYM, respectively. (c) is visualisations t-SNE on NTU 60.

difference. Firstly, the SkeletonMAE encoder enhances the
diversity of the receptive field of the internal expression of
the network by providing graph embedding. Besides, we
thought that the SkeletonMAE encoder has a regularization
effect to a certain extent. What’s more, we can find that
the model SkeletonMAE with the SkeletonMAE encoder
greatly reduces the accuracy difference between classes
without adding regularization methods, which means that
its diverse receptive field expression is of great significance.

C. More Visualization Results

Long-tailed Distribution Fig. 3 shows the long-tail dis-
tribution properties of the FineGym dataset. To verify the
effectiveness of our SSL model for classes with relatively
small instances, in the case of the pre-training body masked
part of 3. We randomly selected five fine-grained labels in
the last half of the long-tail distribution for visualization in
Fig. 4 (a2)-(a3), where the final embedded features before
the classifier are visualized by the 2d-PCA and 3d-PCA. In
particular, the id, instances, event and label of these ran-
domly selected five fine-grained labels as Tab. 1.

Fig. 4 shows the confusion matrices (Left), 2d-PCA
(Middle) and 3d-PCA (Right) of SSL on FineGym, Div-
ing48, NTU 60 X-Sub and NTU 120 X-Sub datasets. For
the FineGym (99 actions) dataset, We randomly selected
five fine-grained labels in the last half of the long-tail distri-
bution for 2d-PCA and 3d-PCA visualization. And for Div-
ing48 (48 actions), NTU 60 X-Sub (60 actions) and NTU
120 X-Sub (120 actions), five classes are randomly selected
for 2d-PCA and 3d-PCA visualization. For all datasets, the
final embedded features before the classifier are visualized



id |# ins event label
salto backward stretched
with 2 twist
salto backward stretched
with 2.5 twist
giant circle forward with 1 turn on

72| 60 balance beam

73| 67 balance beam

80] 76  uneven bars one arm before handstand phase
giant circle forward with

81| 83 uneven bars 0.5 turn to handstand

82| 72 uneven bars giant circle forward

Table 1. The five fine-grained labels in the FineGym dataset, which
we selected to visualize by the 2d-PCA and 3d-PCA.

by the 2d-PCA and 3d-PCA. Fig. 4 (al, bl, cl, d1) shows
that our SSL works well for fine-grained action recogni-
tion tasks on the three datasets. Fig. 4 (a2, a3, b2, b3, c2,
c3, d2, d3) shows that our SSL representation is low intra-
class variation and high inter-class variation, which further
validates that our SkeletonMAE can learn discriminative
fine-grained skeleton representation by reconstructing hu-
man body structure.

D. Spatial-Temporal Representation Learning
Method

According to the vanilla GCN [5], the update rules for
a multi-layer GCN that propagates rules layer-wise are as
follows:

H*Y = & (f)‘%;&f)‘%HEl)W(”) , )

where adjacency matrix A=A+I ~» Iy is the identity ma-
trix, D is the diagonal degree matrix of A,Hi” e RVxDY
and W) are the matrix of joints representation and train-
able weight matrix in the /¥ layer, respectively. t is the time
index, o(+) denotes an activation function like the ReL.U.

To model multiple human skeleton interactions, for
SM(Hgl)) it can be formalized as:

SM(H{") = Concat(SM(H()) & SM(H{'; 1)),

@)
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SM(H,}) & SM(H; ;).
where SM(H;I())) means the 0-th person skeleton sequence
feature in [-layer. Concat(-; -) means to concatenate two fea-
tures.

E. Supplementary Experiments

From Tab. 2, in the non-long-tailed dataset NTU 60, our
body part mask strategy improves significantly compared
to the random mask strategy in all cases except for torso
and head reconstruction, since the movements of individual

# Masked Joints Number| 5 9 12 15
Ratio of Mask Joints 30% 50% 70% 90%
Accuracy of SSL 90.5 91.9 91.8 91.6
92.0 91.9
92.8 92.3
High V1. V2,V5,V0,V1,Vs,
Masked Body Part (V3,V5)Vo,Vs,Vs) VaVs) VaVs)
92.0 91.7
Low (1}92'5 : (3 - } LV VoV
>3 07 V4, Vs)  V3,Vs)

Table 2. The comparison of our body part based masked and the
random masked strategies in the NTU 60 X-sub dataset.

limbs are more important for distinguishing an action (the
same in FineGYM dataset).
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Figure 2. The accuracy difference for our SSL model on the FineGym dataset of 99 fine-grained action labels, accuracy difference for each

class obtained by subtracting the average accuracy of all classes for each class.
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Figure 3. For the long-tailed distribution of the FineGym dataset, we randomly select five fine-grained labels (id: 72, 73, 80, 81 and 82) in

the last half of the long-tail distribution for 2d-PCA and 3d-PCA visualization.
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Figure 4. Confusion matrices (Left al, bl, cl, d1), 2d-PCA (Middle a2, b2, c2, d2) and 3d-PCA (Right a3, b3, c3, d3) of SSL on three
datasets. Five classes are randomly selected for 2d-PCA and 3d-PCA visualization. (al), (a2) and (a3) are for FineGym (99 actions); (b1),
(b2) and (b3) are for Diving48 (48 actions); (c1), (c2) and (c3) are for NTU 60 X-Sub (60 actions); (d1), (d2) and (d3) are for NTU-120
X-Sub (120 actions).




