
Supplementary Material for
UCF: Uncovering Common Features for Generalizable Deepfake Detection

1. Overview

This supplementary material provides additional details
regarding our implementation settings, visualizations, and
experimental results, including:

• Detailed network architecture (see Sec. 2).

• Detailed implementation settings (see Sec. 3).

• Embedding visualizations (see Sec. 4).

• Additional experiments (see Sec. 5).

2. The Network Architecture

Encoder The encoder proposed in the manuscript has a
fingerprint encoder and a content encoder to extract the fin-
gerprint and content features, respectively. Note that both
the fingerprint encoder and content encoder are based on
Xception [8], with model parameters initialized by pre-
training on ImageNet. We also try other backbones and
show that our framework can be applied to various existing
CNN architectures (Tab. 7 in the manuscript and Tab. 5).
Both the fingerprint encoder and content encoder utilize
MLP layers for performing multi-task classification. The
details of the encoder are shown in Fig. 1.

3. Detailed Implementation Settings

In line with FF++[8], we adopt the official data splits
and use 740 videos for training, 140 videos for validation,
and 140 videos for testing. To ensure a balanced training
dataset, we maintain a 1:1 ratio of real and fake images by
randomly selecting a fake image from forgery videos and
a real image from genuine videos. To facilitate the disen-
tanglement of common and specific forgery features, we
propose an augmentation strategy that involves swapping
features within the same labels for both common and spe-
cific features. We provide further details of this strategy in
Alg. 1. Our proposed approach is implemented in PyTorch,
and we utilize one Nvidia A100 GPU per experiment.

One image pair (𝒙!	, 𝒙#)

Conv 32, 3×3, stride=2×2
BN + ReLU Conv 32, 3×3, stride=2×2

BN + ReLU

Conv 64, 3×3, stride=1×1
BN + ReLU

Conv 64, 3×3, stride=1×1
BN + ReLU

2×(32×127×127)

XceptionBlock 1-3

2×(64×125×125)

XceptionBlock 4-7

XceptionBlock 8-12

2×(728×16×16)

2×(728×16×16)

2×(1024×8×8)

2×(3×256×256)

Fingerprint pair (𝒇!	, 𝒇#)

2×(32×127×127)

XceptionBlock 1-3

2×(64×125×125)

XceptionBlock 4-7

XceptionBlock 8-12

2×(728×16×16)

2×(728×16×16)

2×(1024×8×8)

2×(3×256×256)

Content pair (𝒄!	, 𝒄#)

Specific Block Common Block

Common pair (𝒇!$, 𝒇#$)Specific pair (𝒇!% , 𝒇#%)

Fingerprint Encoder 𝑬!	 Content Encoder 𝑬#	

Figure 1: The architecture of the proposed encoder. For
both the fingerprint and content encoders, the input image
pair will be first passed through two convolutional layers
and then fed into three “XceptionBlock”. Different from
the original Xception [8], we drop the exit flow, which in-
cludes two separable convolutional layers to adjust the num-
ber of channels. Instead, we design two additional blocks in
the fingerprint encoder, i.e., the “Specific Block” and the
“Common Block”. These blocks are implemented using
three convolutional layers to extract specific and common
fingerprint features (See Fig. 2). The extracted specific and
common fingerprint features are then fed through their re-
spective heads (See Fig. 2), which consist of three MLP lay-
ers, for multi-task classification.

4. Additional Embedding Visualizations

Our proposed approach involves four distinct features,
i.e., whole forgery, specific forgery, common forgery, and
content features (Sec. 3 in the manuscript). To validate our
approach, we perform a t-SNE visualization [10] (Fig. 2 in
the manuscript), demonstrating that the baseline Xception
model [8] and our specific module only capture method-
specific artifacts, while our common module captures the
common features across different forgeries. We also con-

Training Method
CelebDF DFD DFDC

AUC ↑ AP ↑ EER ↓ AUC ↑ AP ↑ EER ↓ AUC ↑ AP ↑ EER ↓

FF++
Xception [8] 0.672 0.748 0.367 0.727 0.889 0.398 0.651 0.822 0.443

Liang et al. [6] 0.706 0.752 0.353 0.829 0.926 0.211 0.700 0.878 0.392
Ours 0.824 0.847 0.287 0.945 0.973 0.104 0.805 0.895 0.301

Table 1: Comparisons of generalization ability with disentanglement-based methods in terms of other metrics. The metrics
are AUC, AP (Average Precision), and EER (Equal Error Rate). For AUC and AP, the higher the better. For EER, the lower
the better. Our results demonstrate that our method performs better than both Liang et al. [6] and Xception [8] under different
datasets with different evaluation metrics, and the best results are highlighted in bold font.

Fingerprint pair (𝒇!	, 𝒇#)

Conv 512, 1×1, stride=1×1
BN + ReLU

2×(256×8×8)

2×(1024×8×8) 2×(1024×8×8)

Specific pair (𝒇!$, 𝒇#$)

Conv 256, 1×1, stride=1×1
ReLU

2×(512×8×8)

×3 Conv 512, 1×1, stride=1×1
BN + ReLU

2×(256×8×8)

Common pair (𝒇!% , 𝒇#%)

Conv 256, 1×1, stride=1×1
ReLU

2×(512×8×8)

×3

Specific Block Common Block

×1 ×1

Average Pooling

2×(512)

2×(1024×8×8)

Linear, in_f=256, out_f=512
ReLU

×1

Specific Head Common Head

×1

2×(256)

2×(5)

Linear, in_f=512, out_f=5
ReLU

×1

Average Pooling

2×(512)

Linear, in_f=256, out_f=512
ReLU

×1

×1

2×(256)

2×(2)

Linear, in_f=512, out_f=2
ReLU

×1

Figure 2: The architecture of the “Specific Block” and
“Common Block” in the proposed encoder and the “Spe-
cific Head” and “Common Head” in our framework. The
encoder consists of two blocks, namely the “Specific Block”
and “Common Block”, while the framework consists of two
heads, namely the “Specific Head” and “Common Head”.
As we only utilize the forgery features for detection, with-
out considering the content, we input the fingerprint pair
into both the “Specific Block” and “Common Block”, as
well as the “Specific Head” and “Common Head”, to ob-
tain the prediction outputs and learn method-specific pat-
terns and common features, respectively. It should be noted
that this figure only considers the scenario where we train
on the FF++ [8], resulting in outputs of shapes 5 and 2 for
the specific and common heads, respectively.

duct ablation studies in the manuscript (Tab. 6) to compare
binary classification results with different forgery features.

In this section, we conduct additional t-SNE visualiza-
tions to show the embedding visualizations of the whole
forgery and content features in our framework, as shown in
Fig. 3. The results demonstrate that the whole and specific
forgery features learn method-specific artifacts, while our
common features can capture the common features across
different forgeries. Additionally, the content features do
not differentiate between real and each forgery technology,

which is expected.

5. Additional Experiments

5.1. Comparison with Disentanglement Methods

In our main script, we identify another disentanglement-
based detector, i.e., Liang et al. [6]. Since the code of their
framework is not available as an open-source resource and
the original paper only utilizes one manipulation forgery
method for training (i.e., Deepfake [2] in FF++ [8]), we
carefully reimplement their framework by following the
settings of the original paper. Results in the manuscript
(Tab. 3) show that our model outperforms Liang et al. on
all testing datasets, demonstrating the efficacy of uncover-
ing common features. In this section, we provide additional
experiment results of our method with Liang et al. [6] and
Xception [8] by using different evaluation metrics, includ-
ing AUC, AP (Average Precision), and EER (Equal Error
Rate). Note that both Liang et al. and our framework uti-
lize Xception as the backbone. Following our main script
(Tab. 3), we use FF++ [8] as the training data and use
CelebDF [5], DFD [1], and DFDC [3] as the testing data.
The result is shown in Tab. 1. From the result, we can see
that our proposed method outperforms both Liang et al. and
Xception on all testing datasets with all evaluation metrics.

5.2. More ablation studies

This section presents additional ablation studies aimed
at investigating the impact of different parameter settings
on the performance of the model. Specifically, we focus on
the weight values of the specific loss, contrastive loss, and
the margin in the contrastive loss. We first search for the
optimal parameters for the specific loss, then fix the weight
of the specific loss and proceed to search for the optimal
parameters for the contrastive loss. Finally, we search for
the optimal margin value with the specific and contrastive
loss weights fixed.

Comparison with binary classification results with dif-
ferent weights of the specific loss. In our manuscript, the
specific loss is a crucial component of our overall objective
function (Eq. (10)) as it helps to balance the influence of

Our Proposed Method

Specific ContentCommon

Real Deepfakes Face2Face FaceSwap NeuralTexture

Whole Forgery

Figure 3: The t-SNE [10] visualization of features extracted from our framework on FF++ [8]. In the visualization, images
generated by the four methods locate separately in the latent space, which reveals that the whole forgery actually learns
method-specific features, consistent with our forgery-specific module. This observation explains that both the whole and
specific forgery features can mainly recognize specific types of forgeries and thus fail to generalize well to a broader range
of forgeries. Additionally, as expected, the common module of our method captures the common forgery features across
different methods, while the content module captures only forgery-irrelevant features.

Table 2: Testing AUC results obtained for different weights
of the specific loss on various datasets are shown. The best
result is highlighted in bold font. “Avg.” represents the av-
erage AUC for cross-datasets. Other hyper-parameters λ3

and α are set to be 0.05 and 3 in this setting.

Training Method Testing AUC

CelebDF DFD DFDC Avg.

FF++

λ1=0.01 0.806 0.936 0.787 0.843
λ1=0.1 0.824 0.945 0.805 0.858
λ1=1 0.806 0.927 0.791 0.841
λ1=10 0.768 0.934 0.772 0.825

specific features on the final result. To evaluate the gen-
eralization performance of the model under various weight
values (i.e., λ1 = 0.01, 0.1, 1, 10), we conducted ablation
studies to evaluate the impact of the different weights of the
specific loss (λ1). The results, as shown in Tab. 2, suggest
the existence of a performance peak for different choices
of λ1. The table reveals that when λ1 is either too large
(λ1 = 10) or too small (λ1 = 0.01), the model’s perfor-
mance is limited. Our experiments indicate that the optimal
choice for λ1 is 0.1.

Comparison with binary classification results with dif-
ferent weights of the contrastive loss. The contrastive
regularization loss is also an essential component of our
overall objective function (Eq. (10)). We conduct abla-
tion studies to evaluate the impact of different weights

Table 3: Testing AUC results obtained for different weights
of the contrastive loss on various datasets are shown. The
best result is highlighted in bold font “Avg.” represents the
average AUC for cross-datasets. Other hyper-parameters λ1

and α are set to be 0.1 and 3 in this setting.

Training Method Testing AUC

CelebDF DFD DFDC Avg.

FF++

λ3=0.01 0.823 0.944 0.793 0.853
λ3=0.05 0.824 0.945 0.805 0.858
λ3=0.1 0.802 0.933 0.788 0.841
λ3=0.5 0.806 0.924 0.780 0.837

of the contrastive loss (λ3) on the model’s generaliza-
tion performance under various weight values (i.e., λ3 =
0.01, 0.05, 0.1, 0.5). The results, presented in Tab. 3, indi-
cate that the optimal choice for λ3 is 0.05.

Margin in the contrastive loss Margin is a hyper-
parameter in our contrastive regularization loss in the
manuscript (Eq. (5)). It determines the minimum distance
between the anchor-positive pair and the anchor-negative
pair. Specifically, if the difference between the distances
of anchor-positive and anchor-negative pairs is less than α,
then the loss value is set to 0. Otherwise, the loss value is
proportional to the difference between the distances. In our
case, it controls the separation between the common and
specific forgery representations of the real and fake sam-
ples, ensuring that they are distinct from each other. We

Table 4: Testing AUC results obtained for different val-
ues of the margin α in the contrastive loss on various
datasets are shown. The best result is highlighted in bold
font. “Avg.” represents the average AUC for cross-datasets.
Other hyper-parameters λ1 and λ3 are set to be 0.1 and 0.05
in this setting.

Training Method Testing AUC

CelebDF DFD DFDC Avg.

FF++

margin=1 0.801 0.955 0.792 0.849
margin=2 0.799 0.936 0.786 0.840
margin=3 0.824 0.945 0.805 0.858
margin=4 0.789 0.923 0.782 0.831

Table 5: Testing AUC results obtained for different back-
bones applied in our framework. The best result is high-
lighted in bold font. “Avg.” represents the average AUC for
cross-datasets.

Training Backbone Testing AUC

CelebDF DFD DFDC Avg.

FF++

ResNet34 [4] 0.809 0.923 0.729 0.820
Efficient-B1 [9] 0.827 0.933 0.800 0.853

Xception [8] 0.824 0.945 0.805 0.858
ConvNext [7] 0.869 0.946 0.802 0.872

conduct ablation studies to evaluate the performance of dif-
ferent weight values (i.e., α = 1, 2, 3, 4). Results in Tab. 4
show that the optimal choice for α is 3.

5.3. Other choices of backbone

In this section, we investigate the choice of backbone
on the generalization ability of our proposed framework.
In the manuscript (Sec. 4.3), we consider two backbones
for our framework (Xception [8] and ConvNeXt [7]) to
demonstrate that our proposed framework can largely im-
prove the generalization performance of both Xception and
ConvNeXt backbones. To further show that our framework
is effective and applicable to different backbone choices, we
additionally conduct experiments on two backbones in our
proposed framework, i.e., ResNet-34 [4], Efficient-B1 [9].
Results from Tab. 5 show that larger networks tend to result
in greater generality. Overall, our proposed framework has
the potential to enhance the generalization ability of vari-
ous existing backbone networks, which could be explored
in future research.

Algorithm 1 Pseudo code for swapping common and spe-
cific features in a PyTorch style.
spe label, f spe: list of types of the specific label
f share, f spe: common and specific feature tensors
spe label: label of the specific features
aug idx: index for data augmentation
bs: batch size

def swap specific features(spe label, f spe):
move torch tensor to a python list in cpu
spe label = spe label.cpu().numpy().tolist()
get the input specific label
index list = list(range(len(spe label)))
init a dictionary, where its key is the type and value is the index
spe dict = defaultdict(list)
do for-loop to get specific dict
for i, one type in enumerate(spe label):

spe dict[one type].append(index list[i])
shuffle the value list of each key
for keys in spe dict.keys():

random.shuffle(spe dict[keys])
generate a new index list for the value list
new index list = []
for one type in spe label:

value = spe dict[one type].pop()
new index list.append(value)

swap the value list by new index list
f spe new = f spe[new index list]
return f spe new

def swap common features(bs, f share):
Swap the real features
idx list = list(range(0, bs//2)) # the first half is real
random.shuffle(idx list)
f share[0: bs//2] = f share[idx list] # swap real common features
Swap the real features
idx list = list(range(bs//2, bs)) # the second half is forgery
random.shuffle(idx list)
f share[bs//2: bs] = f share[idx list] # swap forgery common features
return f share

5.4. Feature Swapping

To achieve improved disentanglement, we introduce a
feature-swapping strategy that prioritizes the proximity of
features with the same label while encouraging distance be-
tween those with different labels. In high-dimensional vec-
tor spaces, we believe that common features of different
categories should be far apart while those within the same
category should be close. Similarly, for specific instances,
features of different types should be distant while those with
the same type should be proximate. Through the use of this
augmentation strategy, we can obtain more distinctive dis-
entangled features and ultimately achieve better generaliza-
tion performance. To provide further clarity on this strat-
egy, we present the pseudo codes in Alg. 1, which outline
the detailed steps. The implementation details for each step
are provided in the comments within the code.

References
[1] Deepfakedetection. https://

ai.googleblog.com/2019/09/
contributing-data-to-deepfakedetection.
html Accessed 2021-04-24.

[2] DeepFakes. www.github.com/deepfakes/
faceswap Accessed 2021-04-24.

[3] Deepfake detection challenge. https://www.kaggle.
com/c/deepfake-detection-challenge Ac-
cessed 2021-04-24.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[5] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu.
Celeb-df: A new dataset for deepfake forensics. In CVPR,
2020.

[6] Jiahao Liang, Huafeng Shi, and Weihong Deng. Exploring
disentangled content information for face forgery detection.
In ECCV, pages 128–145. Springer, 2022.

[7] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, pages 11976–11986, 2022.

[8] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
ICCV, 2019.

[9] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, pages
6105–6114. PMLR, 2019.

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
2008.

https://ai.googleblog.com/2019/09/contributing- data- to-deepfakedetection.html
https://ai.googleblog.com/2019/09/contributing- data- to-deepfakedetection.html
https://ai.googleblog.com/2019/09/contributing- data- to-deepfakedetection.html
https://ai.googleblog.com/2019/09/contributing- data- to-deepfakedetection.html
www.github.com/deepfakes/faceswap
www.github.com/deepfakes/faceswap
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge

