
2D-3D Interlaced Transformer for
Point Cloud Segmentation with Scene-Level Supervision

Supplementary Material

This document provides additional experiments. In the
following, we first present some potential extensions of the
proposed method. Then, we provide the model architecture
and running time. Lastly, we present detailed quantitative
results as well as qualitative examples, including less suc-
cessful cases.

1. Extensions of the Proposed Method

1.1. Extension with Known Poses and Depths

In Section 4.3.2 of the submitted paper, we present how
to extend our method when camera poses and depth maps
are available. In the following, we elaborate on this exten-
sion by providing further details.

Inspired by the fact that positional information can en-
rich image features [5], we perform positional embedding
for both 2D and 3D features before passing them to the
transformer encoders. This way, both 2D and 3D share a
common 3D world space, facilitating explicit position cor-
relation between 2D images and 3D point clouds. We first
generate the 3D coordinate map xt ∈ RH×W×3 for each
view vt. Given the depth map dt and camera projection
matrix kt, the 3D world coordinate xt(u, v) at 2D position
[u, v] is computed by

[(xt(u, v))
⊤, 1]⊤ = dt(u, v) · k−1

t [u, v, 1]⊤. (1)

Via Eq. 1, we obtain the 3D world coordinate map xt for
each view image vt. All T 3D coordinate maps {xt}Tt=1

are fed into a coordinate embedding module femb, which is
composed of two 1×1 convolution layers with ReLU activa-
tion, to get the positional embedding z2D ∈ RT×H×W×D,
where D is the embedding dimension. The positional em-
bedding is added to 2D features for 3D positional aware-
ness. Since each point of a point cloud P lies in the
3D space, femb is directly applied to all points and gets
z3D ∈ RM×D, where M is the number of points in P . Fig-
ure 1 depicts the extended method by revising Figure 2 in
the submitted paper.

1.2. Extension to Joint 2D-3D Segmentation

As discussed in Section 5 of the submitted paper, the
proposed method can be extended to joint 2D and 3D seg-
mentation using weak supervision. Through flattening the
image features F2D instead of applying global average pool-
ing, we obtain a set of multi-view patch tokens, which can
be further considered as segmentation results [8]. However,
we get inferior results, 0.275 and 0.129 in mIoU of 3D and
2D, respectively, on the ScanNet training set. It may be be-
cause too many views generate many patch tokens and cre-
ate lots of noise. Specifically, the image size is 320 × 240
in ScanNet, creating 80 patch tokens for a view and a to-
tal of 1280 tokens for 16 views. The high number of 2D
tokens hinders the optimization of self-attention and cross-
attention, leading to unsatisfactory performance.

2. Model Architecture and Running time
As mentioned in Section 3.5, ResNet-50 [2] is adopted

as the 2D feature extractor. MinkowskiNet [1] work as the
3D feature extractor for ScanNet and S3DIS. Specifically,
we use MinkowskiUNet18A, and the voxel size is set to
5cm. The network was optimized on a machine with eight
NVIDIA GTX 3090 GPUs. With 500 epochs, it took about
two days to complete the optimization. For the semantic
segmentation model, we use MinkowskiUNet18C with the
voxel size set to 2cm. The network was optimized on a
machine with eight NVIDIA GTX 1080Ti GPUs. The opti-
mization required 150 epochs, which took around a day to
complete.

As discussed in Sec 4.2.2, the overhead of the proposed
interlaced decoder is acceptable. Table 1 shows the in-
ference time and computational cost of different methods.
WYPR [7] is not presented since their model code are not
publicly available.

2.1. Generalize to Another Backbone

To assess the generalizability of our approach, we em-
ploy PointNet++ [6] as the 3D feature extractor, which also
serves as a popular backbone for point cloud-based applica-
tions. Notably, our method yields competitive performance
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Figure 1: Network architecture of our MIT extension with camera poses and depths maps.

Methods Time FLOPs

MIL-Trans [9] 8.9 ms 181 G
MIT (3D-only) 9.4 ms 199 G

MIT (Ours) 27.3 ms 220 G

Table 1: The inference time and FLOPs of different meth-
ods.

results, achieving 35.1 and 29.7 mIoU on the ScanNet val-
idation set and S3DIS test set, respectively. The results
demonstrate that our MIT is general because it can work
with different backbones.

2.2. Utilizing no pre-trained 2D model

We train our method with randomly initialized 2D
ResNet-50 and observe only a minor performance drop
(35.8%→ 34.6% in mIoU on the ScanNet validation set).
This result indicates that our method does not rely heavily
on ImageNet pre-training and can work with pure 3D scene-
level supervision.

3. Quantitative Results of Multi-view Images

We also report the performance of multi-label image
classification in Table 2. This task aims to find all exist-
ing categories in a single view, by giving only the class ap-
pearance in the multi-view images for training. We first re-
port the baseline result, which is conducted by averaging
the estimated class scores across all views during training
and obtaining the per-view classification result by passing a
single view to the model. ResNet-50 [3] is adopted as the
feature extractor. Our method enriches the views with self-
attention in 2D and cross-attention in 3D, showing better
classification results compared to competing methods that
only consider 2D information.

Method Sup. ScanNet S3DIS

Baseline F. 79.4 82.3
Baseline S. 52.4 55.1
Kim et al. [4] S. 54.9 58.2
MIT (Ours) S. 56.1 57.9

Table 2: Quantitative results (mAP) of several multi-label
classification methods with diverse supervision settings on
the ScanNet and S3DIS image datasets. “Sup.” denotes the
type of supervision. “F .” represents full annotation for each
view. “S.” indicates that class tag annotation is shared by
all views in the scene.

4. Class-wise Quantitative Performance
In Table 1 of the submitted paper, we report the aver-

age performance over the categories of ScanNet and S3DIS.
Here we provide detailed class-wise results. Table 3, Ta-
ble 4 and Table 5 show the class-wise performance of our
method on the ScanNet validation set, ScanNet test set, and
S3DIS datasets, respectively.

5. Qualitative Results
Figure 2 and Figure 3 show the segmentation results gen-

erated by our method with scene-level supervision, includ-
ing both successful cases and less successful ones. It can be
observed that the proposed method delineates precise seg-
mentation contours without using any point-level supervi-
sion. However, those categories with very similar shapes
and colors lead to wrong segmentation results, such as the
other furniture in the example of the last column of the third
row in Figure 2 and the clutter in the example of the last col-
umn of the first row in Figure 3. Also, some points of wall
examples may be misclassified as doors or windows since
they share very similar shapes.
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Method wall floor cabinet bed chair sofa table door window B.S. picture cnt desk curtain fridge S.C. toilet sink bathtub other mIOU

MIL-trans [9] 52.1 50.6 8.3 46.3 27.9 39.7 20.9 15.8 26.8 40.2 8.1 21.1 22.0 45.9 4.5 16.6 15.2 32.4 21.2 8.0 26.2
WYPR [7] 52.0 77.1 6.6 54.3 35.2 40.9 29.6 9.3 28.7 33.3 4.8 26.6 27.9 69.4 8.1 27.9 24.1 25.4 32.3 8.7 31.1
MIT (Ours) 57.3 89.7 24.1 54.9 31.5 62.8 42.5 19.8 27.4 45.1 1.1 31.4 41.7 41.4 17.6 25.0 34.5 8.3 44.4 15.6 35.8

Table 3: Quantitative results (mIoU) of several point-cloud segmentation methods with scene-level supervision setting on the
ScanNet validation set. “B.S.” denotes bookshelf; “S.C.” stands for shower curtain and “cnt” denotes counter.

Method wall floor cabinet bed chair sofa table door window B.S. picture cnt desk curtain fridge S.C. toilet sink bathtub other mIOU

MIT (Ours) 42.2 82.1 16.3 55.8 30.6 57.6 35.9 19.3 27.0 39.0 1.4 25.3 27.7 31.3 21.3 17.8 47.8 7.9 29.8 18.8 31.7

Table 4: Quantitative results (mIoU) of our method with scene-level supervision setting on the test set from official ScanNet
benchmark server. “B.S.” denotes bookshelf; “S.C.” stands for shower curtain and “cnt” denotes counter.

Supervision ceil floor wall beam column window door chair table bookcase sofa board clutter mIOU

MIL-Trans [9] 24.9 4.7 40.0 0.0 1.3 2.2 1.8 5.6 16.8 33.0 32.1 0.1 5.8 12.9
MIT (Ours) 80.8 81.0 81.8 0.0 0.9 0.2 27.6 26.7 19.5 15.5 16.8 0.0 9.9 27.7

Table 5: Quantitative results (mIoU) of the proposed method with diverse supervision settings on the S3DIS Area 5 dataset.
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Figure 2: Qualitative results on the ScanNet dataset with scene-level supervision. Each category is associated with the same
row. For each example, we show the input cloud, the ground-truth label, and our segmentation result. The last example of
each row (on the right of the gray line) shows a less successful case.
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Figure 3: Qualitative results on the S3DIS dataset with scene-level supervision. Each category is associated with the same
row. For each example, we show the input cloud, the ground-truth label, and our segmentation result. The last example of
each row (on the right of the gray line) shows a less successful case.
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