
Supplement Materials for Bridging Cross-task Protocol Inconsistency
for Distillation in Dense Object Detection

In the supplementary material, we provide the following experimental results and details:

• Section A: Algorithm to calculate the distillation loss.

• Section B: Implementation details.

• Section C: More experimental results about self-KD, heterogeneous backbones, base detectors, Pascal VOC dataset,
inheriting initialization and response-based distillation.

• Section D: Visualization about intermediate training phases and predicted results.

A. Algorithm
In this section, we propose an algorithm to calculate the distillation loss, which is illustrated in Algorithm A1.

Algorithm A1 The algorithm to calculate the distillation loss.
Require: Training data xi{i=1,··· ,n}, student dense object detector Sdet, parameters θs of Sdet, student dense object detector

Tdet, parameters θt of Tdet, positions pos of anchors
1: Uniformly sample a minibatch of training data B(t)

2: for xi ∈ B(t) do
3: ls, os = Sdet(xi; θs)
4: lt, ot = Tdet(xi; θt)
5: procedure CLASSIFICATION(ls, lt)
6: ps′ = Sigmoid(ls)
7: pt

′ = Sigmoid(lt)
8: w =

∣∣∣pt′ − ps′
∣∣∣

9: Ldis
cls (xi) =

∑
w · BCE(ls′,lt′)

10: end procedure
11: procedure LOCALIZATION(os, ot)
12: bs = Decoder(pos, os)
13: bt = Decoder(pos, ot)
14: u′ = IoU(bs, bt)
15: Ldis

loc (xi) =
∑n

i=1 max(w.,j) · (1− u′
i)

16: end procedure
17: end for

B. Implementation Details
B.1. Main Experiment

Our implementation is based on Pytorch and mmdetection [2]. Different training schedules are set to ensure fair com-
parison with previous methods, such as 1x (namely 12 epochs) and 2x (namely 24 epochs). We use SGD optimizer with
momentum and weight decay set to 0.9 and 0.0001, respectively. The initial learning rate is set to 0.01. Our proposed method
employs α1 and α2 to balance the classification and localization distillation losses, which are set to 1.0 and 4.0, respectively.
All experiments are conducted on 8 RTX 3090 GPUs, with a batch size of 2 images per GPU.

B.2. Combined with Feature-based Methods

Our implementation is based on Pytorch and mmrazor [3]. We adopt the same training schedules, SGD optimizer, and
learning rate settings as described in Section B.1. The hyperparameters α1 and α2 are set to 0.25 and 2.0, respectively. All
experiments are conducted on 8 RTX 3090 GPUs with 2 images per GPU.



C. More Experiment
C.1. Self KD

We have demonstrated the effectiveness of our proposed approach in transferring knowledge from a powerful teacher to
a compact student. Then, in cases where a stronger teacher model is not available, self-KD [5, 8] has emerged as a popular
technique for classification. In the context of dense object detection, we simulate similar scenarios by setting Sdet = Tdet,
where Sdet and Tdet denote the student and teacher detectors, respectively. Our approach also improves the performance
under the self-KD strategy with lightweight detectors, as shown in Table A1. In contrast, LD [10] leads to performance
degradation in these scenarios.

Method Schedule mAP AP50 AP75 APS APM APL

GFocal-Res34(Student) 1x 38.9 56.6 42.2 21.5 42.8 51.4
LD [10] self-KD 1x 38.6 56.0 41.7 21.0 42.4 50.4
Ours self-KD 1x 39.4 57.2 42.6 21.7 43.4 51.6

GFocal-Res18(Student) 1x 35.8 53.1 38.2 18.9 38.9 47.9
LD [10] self-KD 1x 35.0 52.1 37.7 18.6 38.6 46.0
Ours Self-KD 1x 36.2 53.5 38.9 19.3 39.6 48.3

Table A1. Quantitative evaluation results of our proposed method and other logits-based distillation techniques for self-KD scenario on MS
COCO val2017.

C.2. Heterogeneous Backbone

Recently, powerful backbones such as Swin-Transformer have exhibited remarkable performance in various computer
vision tasks. Nonetheless, CNN-based dense object detectors remain extensively employed in practical applications due to
their high speed and ease of deployment. Due to the large gap in feature representations between the two architectures,
applying feature-based methods from Transformer-based detectors to CNN-based detectors is challenging. To address this
issue, we propose a prediction-level distillation method that is feature-free and particularly suitable for this task. As a result,
we can use more powerful teacher detectors to enhance the performance of compact student detectors. As demonstrated in
Table A2, our proposed method is effective when transferring knowledge between detectors with heterogeneous backbones.

Method Schedule mAP AP50 AP75 APS APM APL

GFocal-SwinT(Teacher) 2x 47.3 66.2 51.4 31.8 50.9 60.7
GFocal-Res50(Student) 1x 40.1 58.2 43.1 23.3 44.4 52.5
Ours 1x 43.0 61.5 46.7 25.7 47.3 55.9

GFocal-ResX101DCN(Teacher) 2x 48.1 67.1 52.5 29.7 52.1 62.7
GFocal-Res50(Student) 1x 40.1 58.2 43.1 23.3 44.4 52.5
Ours 1x 42.6 61.4 46.4 26.1 46.4 55.1

GFocal-Res50(Teacher) 2x 42.9 61.2 46.5 27.3 46.9 53.3
GFocal-Res50(Student) 1x 40.1 58.2 43.1 23.3 44.4 52.5
Ours 1x 42.8 61.2 46.4 26.0 47.0 54.1

GFocal-Res101(Teacher) 2x 44.9 63.1 49.0 28.0 49.1 57.2
GFocal-MobileNetv2(Student) 1x 32.6 48.5 34.9 18.0 34.6 43.5
Ours 1x 35.1 51.8 37.8 19.1 37.9 45.6

Table A2. Quantitative evaluation results of proposed distillation method for heterogeneous backbones on MS COCO val2017.

C.3. Base Detector

In this subsection, we evaluate our proposed method on additional base detectors, such as ATSS [9] and YOLOX. The
results in Table A6 indicate that our method achieves comparable gains to the state-of-the-art feature-based methods. The



significant improvement in detector mAP on ATSS [9] and YOLOX further confirms the robust generalization ability of our
proposed method.

Method Schedule mAP AP50 AP75 APS APM APL

ATSS-Res101(Teacher) 1x 41.5 59.9 45.2 24.2 45.9 53.3
ATSS-Res50(Student) 1x 39.4 57.6 42.8 23.6 42.9 50.3
Ours 1x 41.4 59.9 45.1 25.1 45.6 53.5
PKD 1x 41.3 59.2 44.6 24.1 45.6 53.9
PKD + Ours 1x 41.4 59.5 44.8 23.7 45.7 54.1

YOLOX-s (Teacher) 1x 40.3 59.1 43.4 23.5 44.5 53.1
YOLOX-tiny (Student) 1x 31.8 49.0 33.8 12.3 34.9 47.8
Ours 1x 34.2(+2.4) 52.0(+3.0) 36.4(+2.6) 14.7(+2.4) 39.1(+4.2) 50.0(+2.2)

Table A3. Quantitative evaluation results of different distillation methods for ATSS on MS COCO val2017.

C.4. Pascal VOC Dataset

Many recent object detection distillation methods, e.g., [7, 1], only report experimental results on COCO. We follow their
experimental setups. Additionally, we expand our evaluations on Pascal VOC. Table A4 shows that our method increases the
performance from 52.2 to 55.2.

C.5. Inheriting Initialization

As shown in Table A5, equipping with the inheriting strategy, the performance of our method further increases by 0.5
mAP.

C.6. Response-based Distillation

GID [4] proposes response-based distillation. Our method is different with GID [4]. On the one hand, the response-based
distillation in GID is motivated by “the definition of outputs from the detector head varies from model to model”. In contrast,
our method is motivated by an in-depth analysis of the main challenge faced by logit-based distillation techniques in object
detection. We identify the cross-task protocol inconsistency between distillation and classification and propose cross-task
consistent protocols as a solution. This finding offers an interesting insight to the research community. On the other hand,
GID selects part regions of images (i.e., GIs) for distillation. Our method incorporates all regions of the image in distillation,
and we use score-aware weighting for different regions, eliminating the need for complex GI designs. We compare our
method with GID in Table A6. The results in Table A6 indicate the superiority of our method over GID.

Method mAP AP50 AP75

GFocal-Res50 (Teacher) 56.4 79.1 61.3
GFocal-Res18 (Student) 52.2 75.8 56.4
Ours 55.2 78.1 59.2

Table A4. Quantitative evaluation results on Pascal VOC.

Method mAP AP50 AP75

FCOS-Res101 (Teacher) 40.8 60.0 44.0
FCOS-Res50 (Student) 36.6 56.0 38.8
PKD + Ours w/o inheriting 40.2 59.5 43.0
PKD + Ours w/ inheriting 40.7 60.0 43.5

Table A5. Quantitative evaluation results with inherit strategy.



Method Schedule mAP AP50 AP75

Retina-Res101 (Teacher) 1x 38.1 58.3 40.9
Retina-Res50 (Student) 1x 36.2 55.8 38.8
Response-based Distillation [4] 1x 37.9 57.8 41.1
Ours 1x 39.2 59.1 42.4

Table A6. Quantitative evaluation results of our method and Response-based Distillation in GID.

D. Visualization
D.1. Intermediate Phases of Model Training

Our approach improves the performance of the model at different intermediate stages of the training process, which
correspond to different epochs, when compared to the baseline. As illustrated in Figure A1, by the 8th epoch, the performance
gap between our method and the baseline is significantly larger than that at the final epoch. Specifically, for GFocal R34, our
approach achieves a performance improvement of 5% at the 8th epoch, which is higher than the 2.9% improvement observed
at the final epoch. These results suggest that our method achieves faster convergence compared to the baseline.
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Figure A1. Visualization of intermediate training phases on GFocal-Res18, GFocal-R34 and GFocal-R50.

D.2. Prediction Visualization

We provide visual evidence to validate the effectiveness of our proposed method by presenting images from MS COCO [6]
val2017 with various score thresholds. Figure A2 depicts that our method outperforms LD [10] in detecting more high-
quality bounding boxes, particularly under high score thresholds. This result implies that our proposed method offers a more
favorable classification score distribution.
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Figure A2. Visualization compared to LD [10]. 0.3 means under score threshold = 0.3. Best viewed in color.
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