
7. Appendix to “Computationally-Efficient Neural Image Compression with Shallow Decoders”

7.1. More details on the two-layer synthesis with residual connection

Fig. 10 illustrates the proposed two-layer architecture with a residual connection, where a = conv_1(z) denotes the
output of the first transposed conv layer. We implement the residual connection (the lower computation path in the figure) with
another transposed convolution layer conv_res, using the same configuration (stride, kernel size, etc.) as conv_1. In our
main experiments we use k1 = 13, s1 = 8, k2 = 5, s2 = 2 and N = 12.
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Figure 10. Diagram of the proposed two-layer synthesis transform.

The residual connection r is inspired by its success in recent NTC architectures [13, 25], and can also be interpreted as a
data-dependent and spatially-varying bias term that modulates the nonlinear activation ξ(a). At lower bit-rates, we found
employing the residual connection to be more parameter- and compute-efficient than a simple composition of two transposed
layers without the residual connection.

In further experiments, we re-trained models with “mixed quantization” [36] instead of additive uniform noise as in the
main paper, and found that with comparable decoding complexity, a simple two-layer architecture with N = 24 hidden
channels (and no residual connection) in fact slightly outperforms the one with residual connection and N = 12, while keeping
all other hyperparameters the same.

7.2. Theoretical Result

In the following, we derive the decomposition of the R-D cost of neural lossy compression. To lighten notation, we use
non-bold letters (x, z instead of x, z), and adopt the general setting where the latent space Z is a Polish space (which includes,
among many other examples, the Euclidean space R|Z| commonly used for continuous latent variables, or the set of lattice
points R|Z| in nonlinear transform coding), and PZ is a prior probability measure. It is harmless to focus on the common case
where PZ admits a density p(z) (denoted p(z) in the main paper), s.t., PZ(dz) = p(z)dz; in the discrete case, p(z) is a PMF,
and the integral (w.r.t. the counting measure on Z) reduces to a sum. Similarly, QZ|X is family of probability measures, such
that for each value of x it defines a conditional distribution QZ|X=x, which may admit a density q(z|x).

A (learned) lossy compression codec consists of a prior distribution PZ , a stochastic encoding transform QZ|X , and a
deterministic decoding transform g : Z → X̂ . Suppose relative entropy coding [16, 44, 19] operates with minimal overhead,
i.e., a sample from QZ|X=x can be transmitted under PZ with a bit-rate close to KL(QZ|X=x∥PZ) (which may require us to
perform block coding), then given a data realization x, the rate-distortion compression cost is, on average,

L(QZ|X , g, PZ , x) := λEz∼QZ|X=x
[ρ(x, g(z))] +KL(QZ|X=x∥PZ), (7)

where ρ : X × X̂ → [0,∞) is the distortion function, and λ ≥ 0 is a fixed hyperparameter trading off between rate and
distortion, and both ρ and λ are specified by the lossy compression problem in advance.

By Lemma 8.5 of [24], this compression cost admits a similar decomposition to the negative ELBO,

L(QZ|X , g, PZ , x) = − log Γg,PZ
(x) +KL(QZ|X=x∥PZ|X=x), (8)

Our code can be found at https://github.com/mandt-lab/shallow-ntc.

https://github.com/mandt-lab/shallow-ntc


where PZ|X denotes the Markov kernel (transitional distribution) defined by

PZ|X=x(dz) :=
e−λρ(x,g(z))PZ(dz)

Γg,PZ
(x)

, (9)

and the normalizing constant is

Γg,PZ
(x) :=

∫
Z
e−λρ(x,g(z))PZ(dz). (10)

As in variational Bayesian inference, the normalizing constant has the interpretation of a marginal log-likelihood specified by
the prior PZ and model g. We note that the definition of PZ|X depends on g and PZ , but leave this out to lighten notation.
Eq. 8 together with the non-negativity of KL divergence imply that PZ|X is the optimal channel (“inference distribution”) for
reverse channel coding, under which the compression cost equals:

min
QZ|X=x

λEz∼QZ|X=x
[ρ(x, g(z))] +KL(QZ|X=x∥PZ) = − log Γg,PZ

(x) (11)

Let PX be the data distribution. Taking the expected value of Eq. 7 w.r.t. x ∼ PX gives the population-level compression
cost, which can then be rewritten as follows

L(QZ|X , g, PZ) := λEPXQZ|X [ρ(X, g(Z))] + Ex∼PX
[KL(QZ|X=x∥PZ)] (12)

= Ex∼PX
[− log Γg,PZ

(x)] + Ex∼PX
[KL(QZ|X=x∥PZ|X=x)] (13)

= inf
P ′

Z ,ω
Ex∼PX

[− log Γω,P ′
Z
(x)] +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

P ′
Z ,ω

Ex∼PX
[− log Γω,P ′

Z
(x)]

)
(14)

+ Ex∼PX
[KL(QZ|X=x∥PZ|X=x)] (15)

= inf
ω∈G

Fω(λ) +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

ω∈G
Fω(λ)

)
︸ ︷︷ ︸

modeling gap

+Ex∼PX
[KL(QZ|X=x∥PZ|X=x)]︸ ︷︷ ︸

inference gap

, (16)

where for any choice of decoder function ω ∈ G, we define

Fω(λ) := inf
QZ|X

I(X;Z) + λE[ρ(X,ω(Z))] (17)

as the R-axis intercept of the line tangent to the ω-dependent rate-distortion function [50] 6 with slope −λ. The last equation
follows from Eq. 11 and the following calculation

inf
P ′

Z ,ω
Ex∼PX

[− log Γω,P ′
Z
(x)] (18)

= inf
P ′

Z ,ω
inf

QZ|X
λEPXQZ|X [ρ(X,ω(Z))] + Ex∼PX

[KL(QZ|X=x∥P ′
Z)] (19)

= inf
ω

inf
QZ|X

inf
P ′

Z

λEPXQZ|X [ρ(X,ω(Z))] + Ex∼PX
[KL(QZ|X=x∥P ′

Z)] (20)

= inf
ω

inf
QZ|X

λEPXQZ|X [ρ(X,ω(Z))] + inf
P ′

Z

Ex∼PX
[KL(QZ|X=x∥P ′

Z)] (21)

= inf
ω

inf
QZ|X

λEPXQZ|X [ρ(X,ω(Z))] + I(PXQZ|X) (22)

= inf
ω

Fω(λ) (23)

To summarize, we have broken down the R-D cost for a data source PX into three terms,

L(QZ|X , ω, PZ) = inf
ω∈G

Fω(λ) +

(
Ex∼PX

[− log Γg,PZ
(x)]− inf

ω∈G
Fω(λ)

)
︸ ︷︷ ︸

modeling gap

+Ex∼PX
[KL(QZ|X=x∥PZ|X=x)]︸ ︷︷ ︸

inference gap

. (24)

6The g-dependent distortion function [50] is defined as Rg(D) := infQZ|X :E[ρ(X,g(Z))]≤D I(X;Z).



• The first term (which we dentoed by the shorthand “F(G)” in the main text) represents the fundamentally irreducible cost
of compression determined by the source PX and the family G of decoding transforms used. This is the information-
theoretically optimal cost of compression within the transform family G. If we let F (λ) := infQX̂|X

I(X; X̂) +

λE[ρ(X, X̂)] be the optimal Lagrangian associated with the R-D function of PX , then it can be shown that [50]
F (λ) ≤ Fg(λ). When the latent space Z and the transform family G are sufficiently large, it holds that F (λ) = infg Fg(λ),
i.e., the first term of the R-D cost is determined solely by the rate-distortion function of the source distribution PX (and
distortion function ρ), which is the lossy analogue of the Shannon entropy.

• The second term represents the excess cost of doing compression with a particular transform g and prior PZ compared to
the best possible transform and prior, while always operating with the optimal channel (Eq. 8) in each case. Note that this
term only depends on the modeling choices of g and PZ , and does not depend on the encoding/inference distribution
QZ|X ; therefore we call it the modeling gap. It is due largely to imperfect model training/optimization, and/or a mismatch
between the training data and the target data PX (which may not be the same).

• The third term represents the overhead of compression caused by a (potentially) sub-optimal encoding/inference distri-
bution QZ|X , given a particular model g and PZ . This overhead can be eliminated by using the optimal channel PZ|X
given in Eq. 8 (which depends on g and PZ). Therefore we call this term the inference gap.

Remarks The decomposition of the lossy compression cost has a natural parallel to that of lossless compression under a
latent variable model.

Consider a latent variable model (pθ(z), pθ(x|z)) with parameter vector θ, which defines a model of the marginal data
density pθ(x) :=

∫
Z pθ(x|z)pθ(z)dz. The cost of lossless compression under ideal bits-back coding [20, 45] is equal to the

negative ELBO, and admits a similar decomposition [53]:

Ex∼PX
[Ez∼q(z|x)[− log pθ(x|z)] +KL(q(z|x)∥pθ(z))] (25)

=Ex∼PX
[− log pθ(x)] + Ex∼PX

[KL(q(z|x)∥pθ(z|x))] (26)
= H[PX ]︸ ︷︷ ︸

data entropy

+KL(PX∥pθ(x))︸ ︷︷ ︸
modeling gap

+Ex∼PX
[KL(q(z|x)∥pθ(z|x))]︸ ︷︷ ︸

inference gap

(27)

Again, we have decomposed the compression cost into a first term that represents the intrinsic compressibility of the data, a
second term that depends entirely on the choice of the model, and a third overhead term from using a sub-optimal inference
distribution q(z|x) and which can be eliminated using the optimal inference distribution pθ(z|x) (the Bayesian posterior)
given each choice of our model.



7.3. Implementation and reproducibility details

Our models are implemented in tensorflow using the tensorflow-compression7 library. We implemented the
Mean-scale Hyperprior model based on the open source code 8 and the model configuration from Johnston et al. [28]. We
borrowed the ELIC [25] transforms from the VCT repo 9.

Our experiments were run on Titan RTX GPUs. All the models were trained with the Adam optimizer follow-
ing standard procedure (e.g., in [35]) for a maximum of 2 million steps. We use an initial learning rate of 1e − 4,
then decay it to 1e − 5 towards the end of training. For each model architecture, we trained separate models for
λ ∈ {0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08}. For SGA [49], we use similar hyperparameters as in [49], using
Adam optimizer, learning rate 5e− 3, and a temperature schedule of τ(t) = 0.5 exp{−0.0005(max(0, t− 200))} for 3000
gradient steps.

7.4. Additional Results

7.4.1 Results on the reconstruction manifold.

We train three popular NTC architectures [5, 35, 36] for MSE distortion with λ = 0.08 and observe similar results when
traversing the manifold of reconstructed images. We use random pairs of image crops from COCO [30] to define the start
and end points of latent traversal (see Sec. 3.1); we use the same random seed across the three different architectures. All the
images are scaled to [−0.5, 0.5].

MSEs between trajectories In Fig. 11 shows the distance between the resulting trajectory of decoded curve γ̂(t) and
two kinds of straight paths, interpolating between reconstructions x̂(t) := (1 − t)x̂(0) + tx̂(1) or ground truth images
x̂(t) := (1− t)x(0) + tx(1). See detailed discussions in Sec. 3.1.
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(a) Factorized Prior [5].

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0000

0.0002

0.0004

0.0006

0.0008

M
ea

n
S

qu
ar

ed
E

rr
or

ac
ro

ss
t MSE(γ̂(t), x̂(t))

MSE(γ̂(t),x(t))

(b) Mean-scale Hyperprior [35].
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(c) Channel-wise Autoregressive [36].

Figure 11. The distance from the trajectory of decoded curve γ̂(t) to the straight path between end-point reconstructions x̂(t) := (1 −
t)x̂(0) + tx̂(1), and to the straight path between ground truth images x̂(t) := (1− t)x(0) + tx(1).

Quantifying the curvature of decoded curves of reconstructions. Additionally, we quantify how much the curves of
reconstructed images deviate from straight paths by computing the curve lengths. Recall given two tensors of latent coefficients
(z(0), z(1)) (obtained by passing two images (x(0),x(1)) through the analysis transform), we let γ : [0, 1] → Z be the straight
line in the latent space defined by their convex combination, i.e., γ(t) := (1− t)z(0) + tz(1). The curve of reconstructions is
then defined by γ̂(t) := g(γ(t)), with end-points x̂(0) := g(z(0)) and x̂(1) := g(z(1)).

Following Chen et al. [12], the curve length of γ̂ is given by

L(γ̂) :=

∫ 1

0

∥∂g(γ(t))
∂t

∥dt =
∫ 1

0

∥∂g(γ(t))
∂γ(t)

∂γ(t)

∂t
∥dt =

∫ 1

0

∥Jt
∂γ(t)

∂t
∥dt (28)

where Jt ∈ R|X |×|Z| is the Jacobian of the synthesis transform evaluated at z(t) = γ(t) . As in [12], we compute this integral
approximately with a Riemann sum.

7https://github.com/tensorflow/compression
8https://github.com/tensorflow/compression/blob/master/models/bmshj2018.py
9https://github.com/google-research/google-research/blob/master/vct/src/elic.py

https://github.com/tensorflow/compression
https://github.com/tensorflow/compression/blob/master/models/bmshj2018.py
https://github.com/google-research/google-research/blob/master/vct/src/elic.py
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(b) Mean-scale Hyperprior [35].
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Figure 12. The curve-length ratio η v.s. the straight-path-length for randomly chosen image pairs, in three different nonlinear transform
coding architectures [5, 35, 36]. In all cases, the curve lengths are close to the lengths of straight paths.
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Figure 13. Ablation results on the choice of analysis transform in the proposed two-layer synthesis architecture. Using the CNN analysis
from Mean-scale Hyperprior [35] gave relatively worse R-D performance than the analysis transform from ELIC [25].

The shortest path (in Euclidean geometry) between the two end-points of γ̂ is given simply by the linear interpolation
(1− t)x̂(0) + tx̂(1), with a distance of ∥x̂(1) − x̂(0)∥. Therefore, we define the curve-to-shortest-path length ratio

η :=
L(γ̂)

∥x̂(1) − x̂(0)∥
(29)

as a measure of how much the curve γ̂ deviates from a straight path, with η = 1 indicating a completely straight line.
We compute the curve-to-shortest-path-length ratio η on 50 randomly chosen image pairs in three NTC architectures

[5, 35, 36]. We use random 16× 16 image crops (the results are similar for larger images) from COCO [30]. We compute the
curve length integral in Eq. 28 via a Riemann sum, 1

T

∑
ti
∥Jti(z

(1) − z(0))∥, with T = 100. Fig. 12 plots the resulting η
values against the straight-path lengths. In all cases, the curve lengths are close to the straight-path lengths (η concentrated
near 1), and this property appears to hold globally across randomly chosen image pairs.

7.4.2 Ablation results.

The analysis transform. Here, we examine how different choices of the analysis transform affect the performance of our
method based on the two-layer synthesis transform and ELIC’s analysis transform.

We adopt the simpler CNN analysis transform from Mean-Scale Hyperprior [35], which consists of 4 layers of convolutions
with F = 192 filters each, except for the last layer which outputs C = 320 channels for the latent tensor. Fig. 13 shows the
resulting performance with varying F , in both BD-rate savings as well as computational complexity. We see that the CNN
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Figure 14. Miscellaneous additional results, with blue legend labels to be distinguished from results in the main paper. We (1) apply SGA
also to the Hyperprior baseline; (2) simply scale down existing NTC architectures to roughly match the FLOPs of our two-layer synthesis;
(3) explore a JPEG-like hyper synthesis transform to improve its computational efficiency.

analysis gave worse performance than ELIC analysis, and the gap can be closed to some extent by increasing F , but with
diminishing returns and increasingly high encoding complexity.

Additional investigations. We present results giving additional insight into our method and how it compares to alternatives,
evaluated on Kodak. The additional results are highlighted with blue legend titles in Figure 14. First, we consider also applying
SGA to the Hyperprior baseline; as shown by the solid blue line in Figure 14, this also results in a sizable boost in R-D, even
larger than what we observe for our more shallow decoders. We hypothesize that this may be caused by a relatively larger
inference gap in the Hyperprior architecture than ours with shallow decoders.

Next, we show that simply scaling down existing neural compression models tends to result in worse performance than
our approach. We consider two existing architectures: the mean-scale Hyperprior [35] and ELIC [25], and slim down their
synthesis transforms to match (to our best ability) the FLOPs of our two-layer shallow synthesis. For Hyperprior, we adopt
a pruned synthesis transform given by CENIC [28] (specifically, we use their architecture # 178, which uses about 7.3
KMACs/pixel, or about 1.4 times of our two-layer synthesis; we keep the hyper synthesis intact). For ELIC, we simply
reduce the number of conv channels in the synthesis to be 32, so that it uses about 16.5 KMACs/pixel (we also keep its hyper
synthesis intact). We train the resulting architectures from scratch; as shown by the purple (“Johnston 2019 CENIC”) and
brown curves (“ELIC XS”), this results in progressively worse R-D performance in the higher-rate regime compared to our
two-layer synthesis (red curve).

Finally, we conduct a preliminary exploration of a JPEG-like architecture for the hyper synthesis transform. We implement
this with a single transposed-conv layer with stride 4 and (6, 6) kernels. We applied it on top of our linear JPEG-like synthesis,
and observe a 10% worse BD-rate (green curve → pink curve in Figure 14) but nearly a 10-fold reduction in the hyper synthesis
FLOPs (15.18 → 1.8 KMACs/pixel).



7.4.3 Additional R-D results

Below we include additional R-D results on the 100 test images from Tecnick [2] and 41 images from the professional
validation set of CLIC 2018 10. We additionally evaluate on the perceptual distortion LPIPS [54]. Overall, we observe that
our proposed two-layer synthesis with iterative encoding matches the Hyperprior performance when evaluated on PSNR,
but under-performs by 8% ∼ 12% (in BD-rate) when evaluated on perceptual metrics such as MS-SSIM or LPIPS. This is
consistent with results on Kodak in Sec. 4.2.
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Figure 15. Aggregate LPIPS v.s. BPP performance on Kodak.

10http://clic.compression.cc/2018/challenge/

http://clic.compression.cc/2018/challenge/
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Figure 16. Aggregate PSNR v.s. BPP performance on Tecnick.
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Figure 17. Aggregate MS-SSIM v.s. BPP performance on Tecnick.
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Figure 18. Aggregate LPIPS v.s. BPP performance on Tecnick.
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Figure 19. Aggregate PSNR v.s. BPP performance on CLIC professional validation set.
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Figure 20. Aggregate MS-SSIM v.s. BPP performance on CLIC professional validation set.
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Figure 21. Aggregate LPIPS v.s. BPP performance on CLIC professional validation set.


