
A. Proofs
A.1. Derivation of Eqn. (7) with NWGM approxi-

mation

The work of [1] gave the approximation to the expectation
EF [g(F )] as,

EF [g(F )] ≈
∏
F

g(F )p(F ), (1)

based on which we have the expectation of the softmax
function EF [σ(g(F ))] as,

EF [σ(g(F ))] ≈
∏

F exp(gy(F ))p(F )∑
k

∏
F exp(gk(F ))p(F )

=
exp(

∑
F gy(F )p(F ))∑

k exp(
∑

F gk(F )p(F ))

= σ(EF g(F )) (2)

Following Eqn.(2), we derive

p(Y |do(F ))

=
∑
z

p(Z = z|F )
∑
f

p(F = f)[p(Y |F = f, Z = z)]

=EZ|FEF [p(Y |F,Z)]

=EZ|FEFσ(φ1(F,Z))

≈σ[EFEZ|Fφ1(F,Z)]. (3)

Provided that the classifier φ1 is linear with respect to ei-
ther EFF or EZ|FZ, we have the further approximation of
Eqn. (3) as,

σ[EFEZ|Fφ1(F,Z)] ≈ σ[φ1(EFF,EZ|F )], (4)

which completes the derivation.

A.2. Proof of Proposition 4.1

Proof. We have the causal chain (Dp, Y ) → F → Z, so
that I(Ẑ;Y,Dp) ≤ I(Ẑ;F ). The left part I(Ẑ;Y,Dp) =
I(Ẑ;Dp)+I(Ẑ;Y |Dp) according to the chain rule of mutual
information. Combining both, we have

I(Ẑ;Dp) ≤ I(Ẑ;F )− I(Ẑ;Y |Dp). (5)

According to the definition of mutual information, we have

I(Ẑ;Y |Dp) = H(Y |Dp)−H(Y |Ẑ,Dp)

= H(Y )−H(Y |Ẑ,Dp)

≥ H(Y )−H(H(Y |Ẑ) = I(Ẑ;Y ), (6)

which is conditioned on the fact that the label Y is inde-
pendent from the pre-training dataset Dp. Substituting the
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Figure 1: Two categories of deconfounding methods.

inequality (6) into inequality (5), we finally obtain

I(Ẑ;Dp) ≤ I(Ẑ;F )− I(Ẑ;Y ) = I(Ẑ;F )− I(F ;Y )
(7)

which holds under the assumption that Ẑ is sufficient for
F .

B. Background on Causal Intervention
The primary objective of causal intervention is to decon-

found the confounder, e.g., Dp in our problem. There are
mainly two categories of deconfounding techniques, which
we will detail below.

B.1. Backdoor adjustment

The backdoor adjustment seeks a way to block the causal
link from the confounder Dp to the features F , as shown
in Fig. 1a. Mathematically, it computes the causal effect of
the features F to the predictions Y at each stratum of the
confounder Dp, i.e.,

p(Y |do(F )) =
∑
d

p(Y |F,Dp = d)p(Dp = d), (8)

where the do(·) operation denotes the estimation of the true
causal effect via intervention, under the premise that the
prediction of p(Y |F ) given each stratum d of Dp is not
biased. Unfortunately, this backdoor adjustment method is
not applicable to our problem, as the pre-trained dataset Dp

is oftentimes too huge to access and stratify.

B.2. Front-door adjustment

Different from backdoor adjustment, front-door adjust-
ment intervenes by introducing a mediator Z in the forward
path F → Y , leading to the prediction

p(Y |F ) =
∑
z

p(z|F )p(Y |Z = z). (9)

In this case, deconfounding Dp requires both F → Z and
Z → Y to be estimated with the true causal effect. First,
p(Z|do(F )) = p(Z|F ) since Y works as a collider that
blocks the information from F to Z, i.e., F ← Dp → Y ←



Z. Second, similar to the stratification in back-door adjust-
ment, the true causal effect p(Y |do(Z = z)) is obtained by
computing at each stratum of F , i.e.,

p(Y |do(Z = z)) =
∑
f

p(Y |z, f)p(f). (10)

Substituting Eqn. (10) into Eqn. (9) gives the overall front-
door adjustment as,

p(Y |do(F )) =
∑
z

p(z|F )
∑
f

p(Y |z, f)p(f). (11)

C. Pseudo-code

We present the pseudo-codes of resolving rare features in
Algorithm 1 and of resolving spuriously correlated features
in Algorithm 2.

Algorithm 1 Rare features.

Require: Pre-trained feature extractor f ; classification ma-
trix W ; queues Q; patch size PS; batch size B; itera-
tions T ; momentum m; the query parameters θq of f
and W .

1: Initialize the momentum-updated model (fk and Wk)
with parameters θk by copying θq .

2: Randomly initialize the keys Qy for each category y.
3: for iteration = 1 to T do
4: Sample a batch of data {(xi, yi)}Bi=1;
5: Generate image-level features Fi = f(xi) and predic-

tions W (Fi) for each image;
6: Get the confusing classes y′i and the ground true yi;
7: Get 9 channels with Wyi

−Wy′
i

closest to zero and
crop patches with a size of PS at the most attentive
position of each selected channel;

8: Obtain rare features
{
F r1
i , F r2

i ...F r9
i

}
from the

cropped patches via feature extractor f ;
9: Copy keys from Q and detach.

10: for i = 1 to B do
11: Obtain positive keys F r

j from Qyi ;
12: Obtain negative keys F r

k from Qy∈y ̸=yi ;
13: Calculate losses for this sample: Li

r;
14: Update queue: repeat 5 − 8 using fk and Wk to

update rare features F r
j in Qyi

;
15: end for
16: Average losses in the batch;
17: loss.backward();
18: Update θq by gradients and update θk via θk ← mθk+

(1−m)θq;
19: end for

Algorithm 2 Spuriously correlated features.

Require: Pre-trained feature extractor f ; patch/channel at-
tention modules with aggregation operations φ2; classi-
fier φ1; batch size B; iterations T .

1: Randomly initialize the φ1 and φ2.
2: for iteration = 1 to T do
3: Sample a batch of data {(xi, yi)}Bi=1;
4: Generate mediator ẑi = φ2(f(xi)) for each image;
5: Obtain predictions φ1(ẑi) for each image;
6: Calculate losses for each sample: Li

s ;
7: Average losses in the batch;
8: loss.backward();
9: end for

D. Diagrams
D.1. Diagram of rare features

The detailed structure of resolving rare features is shown
in Figure 2.

D.2. Diagram of spuriously correlated features

The detailed structure of resolving spuriously correlated
features is shown in Figure 3.

E. Experimental Setup
E.1. Dataset description

Following [13, 16, 15], we evaluate our methods on eight
datasets: CUB-200-2011 [12], Stanford-Cars [7], FGVC
Aircraft [9], CIFAR10, CIFAR100 [8], Vegetable [11],
ISIC [3] and Caltech101 [4]. In addition, ISIC is a medical
dataset with a highly imbalanced class distribution, which
is closer to real-world applications. All datasets are ob-
tained from the official websites agreeing with their licenses.
The split of 100% sampling rates either follows previous
works [13, 16, 15] except ISIC. ISIC is a closed challenge
dataset that does not provide the label of the official testing
set. Thus we randomly split the official training set into our
training set and testing set. Besides, the split in experiments
of different data sizes (i.e., sampling rates 50%, 30%, and
15%) is provided by previous works [13, 16]. We will also
provide detailed image lists for the data split in our codes.
Table 1 reports the statistics of all datasets.

E.2. Environments and implement details

All methods are implemented in PyTorch [10] and on a
computational platform with 8 Tesla V100 GPUs. Check-
points of ResNet-50/ResNet-101 supervised pre-trained on
ImageNet-1k are provided by PyTorch, and those of ResNet-
50 self-supervised pre-trained on ImageNet-1k are obtained
on their official implementation websites. Especially, Sim-
CLR [2] and BYOL [5] provide the checkpoints imple-
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Figure 2: Illustration of resolving rare features. Given a query image and a set of key images, whose label is the same as the
query image, are positive samples and otherwise are negative samples, we first slice the images into rare patches based on the
attentive regions of selected channels. Then the rare patch features are matched by EMD and used for calculating Lr.
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Figure 3: Illustration of resolving spuriously correlated features. Given an extracted feature map, we first use two attention
modules to approximate the expectations and then aggregate them via a concatenation operation. Then, Ẑ is obtained by an
MLP, which is later used for predictions with φ1.

Table 1: Statistics of datasets.

Datasets Classes Training Testing
CUB-200-2011 200 5994 5794
Stanford-Cars 196 8144 8041
FGVC Aircraft 100 6667 3333
CIFAR10 10 50,000 10,000
CIFAR100 100 50,000 10,000
Vegetable 200 20,000 61,117
ISIC 7 5005 5010
Caltech101 102 3,060 6,084

mented in TensorFlow and we convert them into PyTorch
using the codes approved by their authors. For all datasets,
we follow the data augmentations used in [13, 16]: dur-

ing training, images are randomly resized and cropped into
224 × 224 and then randomly horizon-flipped; during in-
ference, images are resized to 256 and then center-cropped
to 224 × 224. To be consistent with [16], the batch size is
set as 48 for all datasets except CIFAR10 and CIFAR100,
and all methods are optimized by stochastic gradient descent
with momentum 0.9. More statistics of hyper-parameters are
reported in Table 2.

F. Additional Experimental Results
F.1. Compared to the model trained from scratch

In the appendix, we further report the comparison of the
model trained from scratch and Concept-tuning. We choose
the models on CUB using supervised pre-trained ResNet-50.
As shown in Table 3, only 2.27% images exist where the
model trained from scratch makes correct predictions while



Table 2: Statistics of hyper-parameters.

Hyper-parameters CUB Cars Aircraft CIFAR10 CIFAR100 Vegetable ISIC Caltech101
Epochs 50 20 50
Iterations per epoch 500 200 500
Batch size 48 128 48
Learning rate (LR) 0.01
LR schedule MultiStep CosineAnnealing MultiStep
K 40

Dimension of Ẑ 512
Patch size 64
Trade-off α 1.0
Trade-off β 5e− 3

Table 3: Percentages of testing images of CUB, on which the
model trained from scratch makes correct predictions while
fine-tuning methods misclassifies.

Dataset Vanilla fine-tuning Bi-tuning Concept-tuning
CUB 3.08 2.74 2.27

Concept-tuning misclassifies, much better than Bi-tuning.

F.2. Full table of results

Table 4 shows the experimental results using ViT/B-16
pre-trained by MAE and MoCo v3. Besides, in the main
paper we report the experimental results of five methods
on three datasets using ResNet-50 pre-trained by different
pre-training methods. We further report other methods in
Table 5.

Table 4: Results on fine-tuning ViT/B-16 by MAE and MoCo
v3.

Pre-training approach Fine-tuning method CUB Car Aircraft

MAE

Vanilla fine-tuning 77.80 87.35 86.98
Bi-tuning 79.29 88.97 87.91
Core-tuning 79.96 89.54 88.00
Ours 2 80.62 90.05 90.44

MoCo v3

Vanilla fine-tuning 80.34 83.51 85.60
Bi-tuning 83.76 87.70 88.45
Core-tuning 81.00 89.52 89.31
Ours 2 84.57 90.91 90.89

F.3. More ablation studies

Influences of the trade-off weight α. In previous experi-
ments, we set the trade-off weights α as 1.0 for all datasets.
In this section, we further analyze how this term influences
performance. Larger α will more strongly pull rare features,
in the meantime, will increase the risk of overfitting. The
results on three datasets in Fig. 4a show clear peaks, which
supports the existence of a trade-off.

Influences of the trade-off weight β. In previous experi-
ments, we set the trade-off weights β as 5e − 3 by default

for all datasets. Here, we further analyze how this term influ-
ences our methods. We try different values on three datasets,
and the results are shown in Fig. 4b. Even though the best
β may vary on different datasets, the default value 5e− 3 is
enough to obtain good performances.
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Figure 4: Analysis of α and β in our methods using super-
vised pre-trained ResNet-50.

Influences of the patch size. Selection of an appropriate
patch size is also important in our methods and the best
patch size varies from dataset to dataset. While features in
larger patch sizes contain more information and are more
discriminative for contrastive learning, a sufficiently large
patch that occupies most regions of an object and likely fuses
both rare and non-rare features decreases the effectiveness of
resolving rare features. For example, as shown in Fig. 5a, the
best patch size for CUB is 48 while the best one for Cars and
Aircraft is 64 because the objects in CUB occupy relatively
smaller regions in the images. Furthermore, when the patch
size increases to 96, the performances will decrease a lot
(e.g., performance drops from 85.17% to 84.38% on CUB).

Influences of the temperature τ . In previous exper-
iments, we follow the implementation of supervised con-
trastive learning [6] to set the temperature τ as 0.07. In
this section, we conduct experiments to explore the influ-
ences of τ . As shown in Fig. 5b, τ as 0.07 obtains better
performances. The potential reason is that smaller τ tends
to punish more on hard samples [14] for generating more
universal representations while reducing the tolerances of
hard samples.



Table 5: Top-1 accuracy (%) on three datasets using four different pre-trained ResNet-50. ∗ denotes that methods can not
converge.

Dataset Method Pre-trained method

MoCo-V2 SimCLR SwAV BYOL Avg.

CUB

Vanilla fine-tuning 76.72± 0.21 76.51± 0.28 80.45± 0.32 81.29± 0.29 78.74
L2SP 71.88± 0.44 64.55± 0.53 75.04± 0.38 76.72± 0.25 72.05
DELTA 72.87± 0.38 ∗ ∗ ∗ ∗
BSS 76.92± 0.29 76.75± 0.20 80.89± 0.35 81.53± 0.25 79.02
Co-tuning 76.39± 0.22 76.35± 0.17 80.93± 0.24 81.72± 0.31 78.85
REGSL ∗ ∗ 77.70± 0.29 79.13± 0.26 ∗
Bi-tuning 79.48± 0.24 75.73± 0.25 81.72± 0.23 82.02± 0.29 79.74
Core-tuning 77.93± 0.18 77.55± 0.15 80.60± 0.27 78.46± 0.18 78.64
Ours 1 82.48± 0.14 78.18± 0.20 83.47± 0.22 83.38± 0.18 81.88
Ours 2 82.53± 0.21 79.81± 0.23 84.78± 0.32 84.45± 0.29 82.89

Cars

Vanilla fine-tuning 88.45± 0.35 84.53± 0.12 88.17± 0.21 88.99± 0.39 87.54
L2SP 81.58± 0.28 65.25± 0.41 76.51± 0.27 81.72± 0.31 76.26
DELTA 82.28± 0.33 ∗ ∗ ∗ ∗
BSS 88.07± 0.27 91.80± 0.34 88.07± 0.31 89.28± 0.15 89.31
Co-tuning 88.35± 0.16 91.56± 0.25 88.53± 0.17 89.45± 0.15 89.47
REGSL 90.96± 0.19 80.03± 0.32 78.60± 0.24 85.77± 0.23 83.84
Bi-tuning 90.05± 0.15 91.75± 0.18 90.49± 0.27 90.90± 0.18 90.80
Core-tuning 90.87± 0.23 91.78± 0.26 91.84± 0.14 91.95± 0.18 91.61
Ours 1 91.02± 0.11 93.27± 0.20 93.41± 0.26 93.22± 0.15 92.73
Ours 2 91.75± 0.18 93.36± 0.23 93.79± 0.32 93.68± 0.25 93.15

Aircraft

Vanilla fine-tuning 88.60± 0.18 87.79± 0.24 83.26± 0.17 85.03± 0.15 86.17
L2SP 86.17± 0.25 65.25± 0.52 76.27± 0.42 80.32± 0.23 77.00
DELTA 82.28± 0.33 ∗ ∗ ∗ ∗
BSS 88.63± 0.17 88.30± 0.30 83.59± 0.15 84.64± 0.20 86.29
Co-tuning 88.63± 0.23 87.64± 0.35 83.59± 0.24 84.52± 0.16 86.10
REGSL 81.16± 0.21 ∗ ∗ 73.90± 0.37 ∗
Bi-Tuning 89.05± 0.16 88.69± 0.17 85.69± 0.13 87.16± 0.11 87.65
Core-Tuning 89.02± 0.19 89.47± 0.21 88.66± 0.34 89.74± 0.20 89.22
Ours 1 89.65± 0.18 90.13± 0.11 91.42± 0.36 90.82± 0.22 90.50
Ours 2 89.32± 0.21 90.85± 0.17 91.75± 0.14 91.21± 0.13 90.76
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Figure 5: Analysis of the patch size, temperature, and keys in our methods on three datasets using supervised pre-trained
ResNet-50.

Influences of the number of keys. This section discusses
the influences of the number of keys used in Lr. In con-
trastive learning, a larger queue is beneficial [2]. However,
a large number of keys in supervised contrastive learning
necessarily sacrifice the stochasticity of sampling from the
queue [16], especially under limited training data (e.g., up to
30 training samples per class on CUB), unfavorably easing
contrastive learning and leading to saturation. Our experi-

mental results in Fig. 5c present apparent saturation, which
supports the unnecessary storage of too many keys. Note
that the best number of keys varies in different datasets, and
our default value of 40 also performs well.



G. Additional Visualization Results
G.1. More visualization of attentive regions

In the section, We further show the regions attended by
the three models on Aircraft in Figure 6. Consistent with
the difference in predictions, the two fine-tuning methods
rely more on front power-plant features.

Train from Scratch Fine-tuning Bi-tuning

Figure 6: Exemplar attentive regions of the model trained
(a) from scratch, by (b) fine-tuning and (c) bi-tuning, where
only the first column predicts correctly.

Train from Scratch Fine-tuning Bi-tuning Concept-tuning

Figure 7: CAM visualization of four methods.

G.2. More visualization of Concept-tuning

To better understand the effectiveness of our methods, we
provide several examples of CAMs in different methods, as
shown in Fig. 7. Influenced by the pre-trained model, fine-
tuning and Bi-tuning will be attracted by the pre-training
features and make wrong predictions, while Concept-Tuning
could resolve the negative effects and predicts correctly. For
example, fine-tuning and Bi-tuning neglect the chest features
as shown in the second row of Fig. 7, while Concept-tuning
attend regions closer to the model trained from scratch.
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