
Appendix for “Cross-Ray Neural Radiance Fields for Novel-view Synthesis
from Unconstrained Image Collections”

In the appendix, we provide detailed proofs of the proposition, more details, and more experimental results of the proposed
Corss-Ray Neural Radiance Fields (CR-NeRF)1. We organize the appendix into the following sections.

• In Sec. A we provides proof of our Proposition 1.

• In Sec. B, we provide details on inference of our CR-NeRF.

• In Sec. C, we discuss the impact of the number of rays on our CR-NeRF, which supports the necessity of considering
multiple rays.

• In Sec. D we describe the detail of our grid sampling strategy.

• In Sec. E we qualitatively and quantitatively compare the transient network of our CR-NeRF with existing methods.

• In Sec. F we compare the training time of our CR-NeRF with existing methods.

• In Sec. G we discuss the effectiveness of our cross-ray paradigm and fusing level.

• In Sec. H we demonstrate more synthesized views by interpolating between an appearance embedding to another.

• In Sec. I, we report more qualitative experimental results of appearance modeling by comparing CR-NeRF and existing
methods on Brandenburg Gate and Trevi Fountain datasets.

• In Sec. J we demonstrate more synthesized views by transferring appearance from unseen images.

A. Proof of Proposition 1
Proposition 1. Given an invertible constant matrix P∈RC×C , assuming that Fa∼N (µa,Σa), Fcr∼N (µcr,Σcr) and

T (Fcr)∼N (µa,Σa), where T (Fcr)=T(Fcr−µcr)+µa and T∈RC×C is a transformation matrix, the optimal T to Problem
(5) is:

T = Σ−1/2
cr

(
Σ1/2

cr PΣaP
⊤Σ1/2

cr

)1/2

Σ−1/2
cr P−1. (A.1)

Proof. We rewrite Eqn. (5) using T (Fcr)=T(Fcr−µcs)+µa as:

EFcr,Fa[T(Fcr−µcr)+µa−Fa]
⊤
[T(Fcr−µcr)+µa−Fa] +β {P[T(Fcr−µcr)+µa]−Fcr}⊤{P[T(Fcr−µcr)+µa]−Fcr} .

(A.2)
Let u = Fcr−µcr, v = Tu, w = µa−Fa and µ∆ = Pµa − µcr, based on Fcr∼N (µcr,Σcr), T (Fcr)∼N (µa,Σa) and
Fa∼N (µa,Σa), we have u ∼ N (0,Σcr), v ∼ N (0,Σa) and w ∼ N (0,Σa). Then Eqn. (A.2) can be rewritten as:

Eu,v,w [v +w]
⊤
[v +w] + β [Pv+µ∆−u]

⊤
[Pv+µ∆−u] . (A.3)

Let v∗ = Pv, we obtain v∗ ∼ N (0,PΣaP
⊤). Expanding Eqn. (A.3) to:
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(A.4)
Since µ∆ is a constant, u ∼ N (0,Σcr), v ∼ N (0,Σa) and v∗ ∼ N (0,PΣaP

⊤), we obtain Ev,w[v⊤w]=Ev,w[w⊤v] = 0,
Ev[v

∗⊤µ∆] = Ev[µ
⊤
∆v

∗] = 0 and Eu[u
⊤µ∆] = Eu[µ

⊤
∆u] = 0. Then, Eqn. (A.4) can be represented as:
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]
+ β

[
v∗⊤v∗ + µ⊤

∆µ∆ + u⊤u− 2v∗⊤u
]
. (A.5)

1We suggest checking the video demo synthesized by our CR-NeRF in the supplementary.



According to the property of trace of matrix, minimizing Eqn. (A.5) is equivalent to minimizing:
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(A.6)

=tr
(
2Σa + β(Σa +Σcr − 2Eu,v[v

∗u⊤])
)

(A.7)

Let Φ = Eu,v[v
∗u⊤] denote the covariance of v∗ and u. Then, the optimal T to Equation 6 can be reformulated as:

T = argmax
T

(tr(Φ)). (A.8)

Olkin et al. [34] show a unique solution to Eqn. (A.8) is
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Since Φ = Eu,v[v
∗u⊤] = Eu,v[v

∗(T−1v)⊤] = PEu,v[vv
⊤](T−1)⊤ = PΣa(T

−1)⊤, combining Eqn. (A.9) obtains the
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B. Inference of CR-NeRF
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Figure 7. Illustration on inference of CR-NeRF.

We provide details on inference of our CR-NeRF in Fig. 7 and Alg. 2. During inference, we sample m× n rays, which
intersect with m× n pixels of reconstructed image In (m and n equals the height and width of In). Thanks to our encoder
parameterized by convolutional neural network and adaptive average pooling, the reference image can be of arbitrary size
and we generate an appearance embedding Fa by encoding In with appearance encoder. After representing the m× n rays
with our proposed cross-ray feature Fcr, we fuse Fcr and Fa with a transformation net and then decode the fused feature to
synthesize In. During inference, we discard the transient object handler and content encoder.



Algorithm 2: The Inference pipeline of CR-NeRF.
Input: m ∗ n rays {ri}m∗n

i=1 , a reference image Ia with size m ∗ n, a multilayer perceptron MLPθ1 , an appearance encoder Eθ2 , a
transformation net Tθ3 , a decoder Dθ4 .

Output: The estimated colors of m ∗ n pixels of a novel view.
1 Generate cross-ray features Fcr and appearance feature Fa with Eθ2 and MLPθ1 by Eqn. (4).
2 Injecting appearance from Ia to scene representation by fusing Fcr and Fa via Tθ3 .
3 Estimating color ĉ({ri}m∗n

i=1 ) w.r.t. the rays and the reference image by leveraging Dθ4 .
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Figure 8. Effectiveness of different number of rays on our CR-NeRF
and Ha-NeRF on brandenburg dataset in terms of PSNR.

#Rays 400 576 784 1024 1600

Ha-NeRF 23.49 23.60 23.51 24.51 23.82
CR-NeRF 26.82 26.89 27.12 26.86 26.69

Table 5. Effectiveness of different number of rays on our CR-NeRF
and Ha-NeRF on brandenburg dataset in terms of PSNR.

C. Effectiveness of Number of Rays

We analyze the impact of the number of rays (#rays) on both Ha-NeRF and our (CR-NeRF). Fig. 8 shows the PSNR results
of the two methods on the Brandenburg dataset in terms of different values of #rays. CR-NeRF consistently outperforms
Ha-NeRF across all tested values of #rays, which verifies that considering multiple rays consistently boosts the performance of
CR-NeRF. Additionally, the performance of CR-NeRF increases as the number of rays increases. However, we also note that
after the number of rays exceeds 784, the performance of CR-NeRF starts to degrade gradually. One possible explanation is that
increasing #rays over a threshold introduces ambiguity in view-consistent modeling, which harms the quality of synthesized
views. Note that although Ha-NeRF uses multiple rays as input, information from each individual ray does not intersect with
that of the others.

D. Grid Sampling strategy

Grid sampling strategy aims to extract a grid of k × k image pixels from a reference image, guided by a grid center u and
sampling scale s. As detailed in [36] and illustrated in Fig. 9, GS involves uniformly selecting k× k image pixels based on the
coordinate set P(u, s) =

{
(sx+ ux, sy + uy) | x, y ∈

{
−k

2 , . . . ,
k
2 − 1

}}
, where u=(ux, uy)∈R2 and s∈R+. With these

pixel coordinates, we sample k × k rays for cross-ray synthesis and also sample our predicted visibility mask for transient
handling.

E. Comparisons of Transient Network

To further verify the effectiveness of our proposed transient network, we conduct a comparative analysis by replacing
the transient network in our CR-NeRF with that of NeRF-W (termed CR-NeRF-U) and utilizing uncertainty formulation for
training. The results in Tab. 6 show the superiority of our transient network on three datasets. Moreover, we visualize the
output of the transient networks of CR-NeRF and NeRF-W in Fig. 10. CR-NeRF achieves a more accurate prediction by
identifying the semantic feature of tourists and trees. Our transient network outperforms NeRF-W because predicting object
visibility is much easier than predicting the colors and densities of transient objects.



F. Comparison of Training Time
In Tab. 7, we report the training times for CR-NeRF, Ha-NeRF, and NeRF-W, spanning 20 epochs, are 1583, 1701, and

1504 minutes, respectively. We employ 8 TITAN Xp GPUs with 17200 iterations per epoch.

G. Effectiveness of Cross-Ray Paradigm and Fusing Level
We study the effectiveness of our cross-ray paradigm and on which level to fuse with appearance features. To this end, we

construct CR-NeRF-R, the only difference of CR-NeRF-R and CR-NeRF is that CR-NeRF-R conduct appearance transfer by
considering ray points of different rays but CR-NeRF achieves the transfer on different rays. In other words, CR-NeRF-R fuses
an image-level appearance feature Fa with ray-point level features, while CR-NeRF combines Fa and Fcr. From Fig. 11,
CR-NeRF is able to model a more accurate appearance, while also reconstructing a more consistent geometry. These results
verify the superiority of the cross-ray manner and show fusing the image-level appearance features with cross-ray features is
more effective than with the cross-ray-points features.

H. Interpolation of Appearance Embedding
Our proposed CR-NeRF is able to synthesize images that gradually change from one appearance image to another. We

achieve this by linearly interpolating the appearance features of the two appearance images. From Fig. 12, we observe that
(1) CR-NeRF is able to handle transient objects and thus synthesize non-transient images (e.g., images in the second row of
Fig. 12 have no transient objects, such as visitors in appearance 1, and the ground synthesized by CR-NeRF better shows the
reflection effect of ground in appearance 1). (2) CR-NeRF captures the appearance more accurately than Ha-NeRF (e.g., the
sky color in the third row of is not as accurate as the fourth row of Fig. 12).

I. Modeling Appearance from Brandenburg and Trevi
We show qualitative experimental results of appearance modeling using images from Brandenburg and Trevi. As shown in

Fig. 13 and Fig. 14, we transfer appearance from Brandenburg to Brandenburg and Trevi and vice versa. CR-NeRF recovers a
more accurate appearance than Ha-NeRF, which demonstrates the effectiveness of our cross-ray paradigm.

J. Modeling Appearance from Unseen Images
Our proposed CR-NeRF is able to deal with unseen appearance images thanks to the ability of our cross-ray appearance

modeling handler. As shown in Fig. 15, our CR-NeRF captures the whole range appearance (e.g., the blue and purple
appearance in the last two columns in Brandenburg and Trevi fountain datasets) of the reference image more accurately
compared with Ha-NeRF. Moreover, our CR-NeRF synthesizes a more consistent appearance than images generated by
Ha-NeRF (e.g., the sudden bright light on the sky of the second and fourth column in the Brandenburg dataset). We also provide
videos of unseen transfers on videos in the supplementary material. Note that NeRF-W needs to optimize its appearance
embedding on each test image by pixel-level supervision, thus NeRF-W cannot be directly applied to unseen appearance
transfer.
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Figure 9. Illustration of grid sampling strategy.
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Figure 10. Comparisons of the transient networks of CR-NeRF and
NeRF-W.

Brandenburg Sacre Trevi

CR-NeRF-U 24.72/0.8873 20.88/0.8161 20.84/0.7382
CR-NeRF 26.86/0.9069 22.03/0.8369 22.02/0.7488

Table 6. PSNR/SSIM of CR-NeRF-U on three datasets.

Method EPOCH Iteration Time (minutes)

NeRF-W 20 17200 1504
Ha-NeRF 20 17200 1701
CR-NeRF 20 17200 1583
Table 7. Training time comparisons of different methods.
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Figure 11. Comparison of CR-NeRF and CR-NeRF-R regarding detailed appearance and depth maps. CR-NeRF is able to synthesize a more
accurate appearance (e.g., the color of the statue in Trevi Fountain and in Sacre Coeur). Moreover, CR-NeRF successfully estimates the
depth of the cavity portion of the building while CR-NeRF-R fails.
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Figure 12. Interpolating between appearance 1 and appearance 2 with a fixed camera position (synthesized results are in the dashed box).
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Figure 13. Transferring appearance from Brandenburg Gate to Brandenburg Gate and Trevi Fountain.
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Figure 14. Transferring appearance from Trevi Fountain to Brandenburg Gate and Trevi Fountain.
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Figure 15. Transferring appearance from unseen images to Brandenburg Gate and Trevi Fountain datasets.


