Appendix overview. In this appendix, we provide details
omitted in the main text, including:

* Experimental details in Appendix A: This section pro-
vides dataset statistics, architecture details, baseline
introduction, implementation details, and training de-
tails.

* Additional definition and experimental results in Ap-
pendix B: This section provides the definition of mea-
suring the flatness of the loss surface and supplements
the experimental results on more datasets.

A. Experimental Details

Dataset description and statistics. We evaluate our method
on PMNIST, CIFAR-100, 5-Datasets and minilmageNet
datasets. 1) Permuted MNIST (PMNIST): We follow
GEM [29], UCB [13] and GPM [43] to generate 10 se-
quence tasks with 10 different permutations of the MNIST
dataset, each containing 10 classes of handwritten digit clas-
sification. 2) 10-Split CIFAR-100: We divide the CIFAR-
100 dataset into 10 tasks, each containing 10 classes. 3)
5-Datasets: We follow ACL [14] and GPM, and take the
following five dataset sequences as the tasks to be learned:
CIFAR-10, MNIST, SVHN [37], not-MNIST [5] and Fash-
ionMNIST [56]. 4) 20-Spilt minilmageNet: Similarly to
GPM, we divide the 100 classes in ImageNet [50] into 20 se-
quentially arriving learning tasks, each containing 5 classes.

Tab. 5 lists the dataset statistics used in this paper. Specif-
ically, #Tasks indicates how many sequentially arrived tasks
the dataset contains. #Classes indicates how many cate-
gories/classes each task contains. #Train, #Valid, and #Test
respectively represent the number of samples of the training
set, validation set, and test set for each task.

Table 5: Statistics of the datasets.

Datasets ‘ #Tasks #Classes #Train #Valid  #Test
PMNIST ‘ 10 10 54,000 6,000 10,000
CIFAR-100 ‘ 10 10 4,750 250 1,000
MinilmageNet ‘ 20 5 2,450 50 500
CIFAR-10 10 47,500 2,500 10,000
MNIST 10 57,000 3,000 10,000
SVHN 5 10 69,595 3,662 26,032
Fashion MNIST 10 57,000 3,000 10,000
NotMNIST 10 16,011 842 1,873

Architecture details. Since all tasks are classified tasks,
we use cross entropy plus softmax as the prediction proba-
bility for the output layer of all networks. In addition, all
network layers use Relu as the activation function. Detailed
configuration information for each network architecture is
described below. 1) MLP: The PMNIST dataset uses a MLP
architecture. Like GPM [43], this architecture contains two
hidden layers, each containing 100 neurons, without bias.

2) AlexNet: The CIFAR-100 dataset uses an AlexNet ar-
chitecture. Similar to GPM, AlexNet [26] consists of three
convolutional layers and two fully connected layers. Specifi-
cally, the number of channels in the three convolution layers
is respectively 64, 128, 256, and the convolution kernel size
is respectively 4 x4, 3 x 3, 2 x 2. The number of neurons in
the two fully connected layers is 2048. We use Dropout to
avoid overfitting, and the drop probability of the first two
convolution layers is set to 0.2. The drop probability of the
third convolution layer and the two full connection layers is
set to 0.5. In addition, all layers use batch normalization. 3)
ResNet18: Following GPM and GEM [29], the 5-Datasets
and MinilmageNet datasets used a smaller version of the
ResNet18 [19] architecture. Specifically, the first seventeen
layers are the convolution layer, and the last is a fully con-
nected layer. The convolution kernel size and padding size
of all convolution layers are set to 3x3 and 1x1, respectively.
The stride of the 1, 6, 10, and 14-th layers is set to 2 x 2, and
the stride of other convolution layers is set to 1 x 1.

Baselines. Below, we briefly introduce the baseline methods
compared in the experiment.

* SGD performs gradient descent on continuously arriv-
ing task data, that is, without any constraints on network
parameter updates. This approach generally leads to
catastrophic forgetting of old tasks after learning new
tasks.

e MTL uses data from all tasks simultaneously to train
the network. It is not a CL setting, and there is no catas-
trophic forgetting. In addition, MTL can improve the
performance of tasks by using knowledge transfer be-
tween tasks, and it can be regarded as the upper bound
of CL.

e EWC [23] uses the diagonal terms of the Fisher in-
formation matrix to measure the importance of each
parameter for the old tasks, and then uses that impor-
tance as the constraint term when the new tasks are
learned.

* MAS [1], like EWC, considers the parameters’ impor-
tance to the old tasks as the regular term when the new
tasks update the parameters.

e HAT [44] uses a hard attention mechanism to generate
network parameter masks. The mask lets some param-
eters remain unchanged while the rest are updated to
adapt to the new task.

* A-GEM [9] constraints require that the inner product of
the gradient direction of the current new tasks on the
network weight and the average gradient direction of
the old tasks on the current weight be positive.

e ER[10] makes a fixed-size memory where only a few
raw examples of old tasks are kept. During the learning
of new tasks, some samples are selected by reservoir
sampling. These selected samples and the samples of
new tasks form a new batch to train the model.



Table 6: The hyperparameters for the baselines and our approach. The ‘Ir’ denotes the initial learning rate. We represent
PMNIST as ‘MNIST’, 10-Split CIFAR-100 as ‘CIFAR’, 5-Datasets as ‘FIVE’ and Split minilmageNet as ‘MIIMG’.

Methods  Hyperparameters

SGD Ir: 0.01 (MNIST, CIFAR), 0.1 (FIVE,MIIMG)
MTL Ir : 0.05 (CIFAR), 0.1 (MNIST, FIVE, MIIMG)

EWC Ir : 0.03 (MNIST, FIVE, MIIMG), 0.05 (CIFAR); regularization coefficient : 1000 (MNIST), 5000 (CIFAR, FIVE, MIIMG)
MAS Ir: 0.001 (MNIST), 0.005 (CIFAR), 0.1 (FIVE, MIIMG); regularization coefficient: 1 (MNIST, MIIMG), 2 (FIVE, MIIMG)

HAT Ir : 0.03 (MIIMG), 0.05 (CIFAR), 0.1 (FIVE); Sma : 400 (CIFAR, FIVE, MIIMG); ¢ : 0.75 (CIFAR, FIVE, MIIMG)
A-GEM  Ir: 0.05 (CIFAR), 0.1 (MNIST, FIVE, MIIMG); memory size: 1000 (MNIST), 2000 (CIFAR), 3000 (FIVE), 500 (MIIMG)
ER Ir : 0.05 (CIFAR), 0.1 (MNIST, FIVE, MIIMG); memory size: 1000 (MNIST), 2000 (CIFAR), 500 (MIIMG), 3000 (FIVE)

OWM  Ir: 0.3 (MNIST), 0.01 (CIFAR)

GPM Ir : 0.01 (MNIST, CIFAR), 0.1 (FIVE, MIIMG); representation size : 100 (FIVE, MIIMG), 125 (CIFAR), 300 (MNIST)
FS-DGPM Ir: 0.01 (MNIST, CIFAR), 0.1 (MIIMG); Memory size: 1000 (MNIST, CIFAR, MIIMG)
GPM+CPRIr: 0.01 (MNIST, CIFAR), 0.1 (FIVE, MIIMG); regularization coefficient: 0.5 (MNIST, CIFAR, FIVE, MIIMG)

DFGP & 1Ir: 0.01 (MNIST, CIFAR), 0.1 (FIVE, MIIMG); o: 20 (MNIST, CIFAR, FIVE, MIIMG); \: 0.1 (MNIST, CIFAR),
0.001 (FIVE), 0.01 (MIIMG); p: 0.05 (MNIST, CIFAR, FIVE, MIIMG)

* OWM [57] stores the input representation of all samples
of the old task as the subspace that the old tasks cover.
When new tasks are learned, they are updated in the
direction orthogonal to these subspaces.

e GPM [43] is similar to OWM, and the new task is also
updated along the direction orthogonal to the old tasks
across the subspace; the difference is that it stores the
basis of the subspace instead of the entire subspace.

e FS-DGPM []2] adds a learnable coefficient to the basis
in GPM and uses adversarial weight perturbation [55]
to improve the flatness of the network. In addition, FS-
DGPM also uses an extra memory to store raw samples
of old tasks.

* GPM+CPR. CPR [6] improves the generalizability of
the classifier by maximizing the entropy of the output
probability [39] of the classifier to make the prediction
more evenly distributed. We added the CPR strategy to
the GPM approach as a stronger baseline.

Implementation details. We follow the baseline method’s
hyperparameter settings in GPM [43] and we list the hyper-
parameter configuration for all methods in Tab. 6. Some
special settings are described below. For the MAS [1]
baseline, we search for the regularized strength hyperpa-
rameter in [0.01,0.1,1, 5]. For the GPM, FS-DGPM and
our DFGP, we search the projection threshold eéh from
[0.90,0.91,...,0.99], with an interval of 0.1. For our
DFGP, we search for A for the loss on perturbed data in
[0.001,0.01,0.1]. We set the « parameter of the Beta distri-
bution for the data perturbation to 20 and the weight pertur-
bation radius p to 0.05 or 0.1. For each method, we run five
random seeds and report the mean and standard deviation.

Training details. We follow the training settings of
GPM [43], including training epochs and batch size for each
dataset. Specifically, for PMNIST, we trained 5 epochs per
task and set the batch size to 10. For CIFAR-100, we trained
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Figure 7: The accuracy (Higher Better) on the CIFAR dataset.
(a) MAS; (b) DF-MAS. t-th row represents the accuracy of
the network tested on tasks 1 — ¢ after task ¢ is learned.

680 626 679 636 (724 716 724 701

TI T2 T3 T4 T5 T6 T7 T8 T9 T10

TI0 T9 T8 T7 T6 T5 T4 T3 T2 T1

65.0

GPM DFGP

100 100
-

970
%6 98 %9 98
%2 966 965 967 99 97 97 963 98 967
958 960 90 91 %4 96 %4 965 95 94 965 93
957 959 962 % 90 91 961 960 960 958 959 %

943 947 948 947 949 950 952 958 956 956 956 956 956 956 955 956

T10 TO T8 T7 T6 T5 T4 T3 T2 T1
TI0 T9 T8 T7 T6 T5 T4 T3 T2 T

925 %29 930 27 26 28 1 934 M2 %7 944 945 948 944 916 92 M8 98 M8 950

94 94

T T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 8: The accuracy (Higher Better) on the PMNIST
dataset. (a) GPM; (b) DFGP. ¢-th row represents the accuracy
of the network tested on tasks 1 — ¢ after task ¢ is learned.
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200 epochs per task and set the batch size to 64. For 5-
Datasets and MinilmageNet, we trained 100 epochs per task
and set the batch size to 64. All datasets use SGD as the
base optimizer. In particular, for CIFAR-100, 5-Datasets and
MinilmageNet, when the loss on the validation set is greater
than the optimal loss for five consecutive times, we halve the
learning rate.

B. Definition and More Experimental Results

B.1. The Definition of Flatness

Below, we explain why the maximum eigenvalue of the
Hesse matrix can show how flatness the loss surface is. A
flat loss surface is broadly defined as where the loss surface
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(d) DFGP. t-th row represents the accuracy of the network tested on tasks 1 — ¢ after task ¢ is learned.
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does not change drastically with weights within a certain
neighborhood [20, 16, 22]. A specific example is given in
Fig. 2. That is, if the value F' in the equation below is smaller,
the loss surface is flatter.
F:=max LW+6§X,Y)-L(W,X,)Y),
ll8ll=<p

where p is a hyper-parameter that represents the radius of
the neighborhood. According to the second-order Taylor
expansion, we have the following:

E(W+3,X,Y) ~L(W,X,Y)+VL(W,X,Y)é

1« .
+ iavﬁ (W,X,Y)3d,

where VL£? (W, X,Y) is the Hessian matrix w.r.t. weight

W, and is positive semi-definite at a local minimum. § is the

perturbation in the neighborhood of W' that causes the worst-

case loss. At a local minimum W*, VL (W*, X Y ) =0,
hence we have

Fa %Ewc? (W*, X,Y)§ < %ATMZSQ,

where A\7"%” is the maximum eigenvalue. In other words, we
can use the maximum eigenvalue of the Hessian matrix w.r.t.
W to measure the flatness of the loss surface.

B.2. Results on CIFAR-100 Dataset

In this section, we analyze that the proposed Data-
augmented Flatness-aware optimization (abbreviated as DF)
strategy does improve the plasticity of MAS [1] as well as
the flatness of the loss surface. Furthermore, our flatness
comparison with FS-DGPM [12] and training time analysis
shows that the proposed DFGP is more efficient and achieves
a flatter loss surface. Finally, we also analyze the adversarial
robustness of each component of DFGP.

Stability analysis. As shown in Tab. 3 of Sec. 4.3, we com-
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bined the proposed DF into an orthogonal projection based
TRGP [27], a regularized-based MAS [!] method and a
memory-based ER [10] method to verify that DF can further
improve their performance. In this section, we take the MAS
method on the CIFAR-100 dataset as an example to further
analyze whether DF-MAS alleviates the catastrophic forget-
ting problem of MAS by improving the flatness of the loss
surface. As shown in Fig. 7, after learning task 7°10, the test
accuracy of the network in tasks 7'1, 75 and 7'7 under the
DF-MAS method is 68.0%, 72.4% and 72.4% respectively.
However, in the corresponding tasks, MAS can only obtain
test accuracy of 63.3%, 69.2% and 70.1% respectively. The
DF-MAS improved by almost two percentage points on the
old tasks compared to the MAS, indicating that the DF-MAS
effectively mitigated catastrophic forgetting.

Flatness visualization. According to Sec. B.1, below we
visualize the flatness of the loss surface under the MAS
method and the DF-MAS method. As shown in Fig. 9(a)
and (b), we can observe that the maximum eigenvalue in
MAS after learning task 710 is 5.97 — 10.63 times that of
DF-MAS. This indicates that the loss surface of the MAS
method is sharper than that of the DF-MAS method. We
also compare the flatness of our method with FS-DGPM
in Fig. 9(c) and (d). We can observe that the maximum
eigenvalues of FS-DGPM are almost all smaller than GPM
(Fig. 6(c)), however, there is still some gap with our DFGP,
that is, the loss surface is not as flat as ours. This is because
we perform flatness optimization at both the data and weight
levels, while FS-DGPM merely considers the weight level.
Also, the manner in which flatness-aware optimization is
solved may also be a contributing factor to the difference.

Training time. We provide a time-to-convergence compari-
son of GPM, FS-DGPM, and our DFGP on CIFAR-100. The
experimental results are shown in Tab. 7, GPM is the most ef-



ficient, but because it does not consider the optimization goal
of flatness, it limits its performance (Tab. 1). FS-DGPM is
the least efficient because it iteratively needs to perform iter-
ative adversarial weight perturbations [55] on new task data
and old task data in memory and needs to update the scale
of the base. Finally, our method achieves acceptable speed
and state-of-the-art performance thanks to the approximate
solution of our data perturbations and weight perturbations.
Of course, we could speed up DFGP by performing flatness-
aware optimization periodically instead of at every step [28].

Table 7: Analysis of training time on CIFAR-100.
Methods | GPM  FS-DGPM  DFGP(ours)
Time Cost (min) ‘ 8.94 152.65 23.25

A discussion of radius p. p is a hyperparameter representing
the radius of the neighborhood. As shown in Tab. 8, when
p is very small (e.g. 0.01), indicating a small radius of data
and weight perturbation, the effect of flatness optimization
is minimal. However, it still outperforms GPM (i.e., 72.31),
and performance may improve if p is increased. p at 0.05 is
a solid default, which is consistent with previous work [16].

Table 8: Analysis of hyperparameter p on CIFAR-100.

p 0.01 0.025 0.05 0.075 0.1
ACC(%) 73.00£0.77 73.61£0.31 74.59+0.33 74.14+0.34 74.04+0.34

B.3. Results on PMNIST Dataset

In this section, we analyze the flatness of GPM, DFGP(w/

D(é)), DEGP(w/ W(6)), and DEGP on the PMNIST dataset.
Stability-Plasticity analysis. As shown in Fig. 8, compared
with GPM, DFGP has more advantages in the performance of
new tasks and significantly alleviated the degree of forgetting
of old tasks.
Flatness visualization. As shown in Fig. 10(a) and (d),
the maximum eigenvalue in DFGP is smaller than GPM.
Of course, we also observed that the maximum eigenvalue
on the PMNIST dataset is much smaller than that on other
datasets. This is because of the high similarity between con-
tinuously arriving tasks in the PMNIST dataset; they have
the same distribution of labels, just different permutations
of input pixels. In addition, the simplicity of the network
architecture in PMNIST compared to other datasets is also a
reason. As shown in Fig. 10(b) and (c), we also analyze the
flatness improvement at the two levels of data and weights
in DFGP. Compared with GPM in Fig. 10(a), our two strate-
gies have smaller maximum eigenvalues, i.e., loss surface is
flatter.

B.4. Results on MinilmageNet Dataset

In this section, we analyze the performance and flatness
of GPM and DFGP on the MinilmageNet dataset.
Stability-Plasticity analysis. As shown in Fig. 11, after
learning the 20-th task, the accuracy of the network on old
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Figure 11: The accuracy (Higher Better) on the Minilma-
geNet dataset. (a) GPM; (b) DFGP. ¢-th row represents the
accuracy of the network tested on tasks 1 — ¢ after task ¢ is
learned.
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Figure 12: The maximum eigenvalue (Lower Better) on
the MinilmageNet dataset. (a) GPM; (b) DFGP. ¢-th row
represents the maximum eigenvalue of the network tested on
tasks 1 — ¢ after task ¢ is learned.

tasks 15, T'10, and 7’15 in the GPM method is 57%, 57%,
and 67%, respectively. However, DFGP can achieve 65%,
65%, 74%. In addition, as shown in Fig. 13, DFGP also
basically outperforms GPM on new tasks that arrive contin-
uously. However, there is still a gap between our proposed
CL method and the multi-task joint training (MTL method),
and we need to further explore more effective CL methods

to narrow this gap in the future.
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Figure 13: New tasks’ accuracy of MTL, GPM, and DFGP
on MinilmageNet dataset.

Flatness visualization. As shown in Fig. 12, we can see that
on the more challenging MinilmageNet dataset (as shown
in Tab. 5, which has more tasks than other datasets) and the
more complex ResNet18 network, the loss surfaces in GPM
tend to become sharper. For example, in GPM, the flatness
of task 7'1 and task 72 was 15 and 80 respectively, when
they were just trained, while after task 720 was learned, the
sharpness for these two tasks increased 10.0 times and 8.4
times, that is, to 150 and 677, respectively. However, in
DFGP, the two tasks only increased by 4.6 and 3.3 times,
respectively. This also suggests that our approach is better at
avoiding the flatness of forgetting.



