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A. Dataset Statistics

A.1. Office-Caltech10

Office-Caltech10 dataset [17, 6] is comprised of four do-
mains, including Amazon, Caltech, DSLR, and Webcam,
and ten semantic categories, backpack, bike, calculator,
headphones, keyboard, laptop computer, monitor, mouse,
mug, and projector. The domain shifts mainly come from
different camera devices or different background environ-
ments. The sampled images are provided in Fig. 1.
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Figure 1. Sampled images from Office-Caltech10 [17, 6].

A.2. DomainNet

Following the previous FL work FedBN [10], we con-
struct a subset by selecting the top ten most frequent classes
from the original DomainNet [13] for our experiments. The
top ten frequent semantic categories contain bird, feather,
headphones, ice cream, teapot, tiger, whale, windmill, wine
glass, and zebra. In this dataset, images with the same type
of style (e.g., clipart or sketch) form a domain. We provide
the sampled images in Fig. 2.
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Figure 2. Sampled images from DomainNet [10, 13].

A.3. Dermoscopic-FL

Dermoscopic-FL dataset [3] contains three types of skin
lesions, Nevus, Benign Keratosis, and Melanoma, dis-
tributed among four data sites (i.e., A, B, C, and D) as sum-
marized in Table 1. Data sites A, B, and C are collected from
HAM10K [18] while data site D is collected from MSK [4].
In Fig. 3, we show sampled images from different data sites.
The domain shifts among all data sites are caused by the use
of different imaging devices.

B. Further Analysis of Our pFedPG

B.1. Impact of data size at clients

In Fig. 4, we analyze the impact of data size on clients
compared with the baselines of FedAvg [15] and FedVPT



Table 1. Dataset statistics of Dermoscopic-FL dataset [3], which
includes three types of skin lesions distributed among four data
sites (i.e., A, B, C, and D)

Category A B C D

Nevus 1,832 3,720 803 1,372
Benign Keratosis 475 124 490 254
Melanoma 680 24 342 374

Total Images 2,987 3,868 1,635 2,000
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Figure 3. Sampled images from Dermoscopic-FL dataset [3].

on the Office-Caltech10 and DomainNet datasets. As we
can observe from Fig. 4, FedAvg [15] performed signifi-
cantly inferior with prompt-based methods (i.e., FedVPT
and ours), especially when the client only contains limited
data (e.g., 10 % client data). This is due to the fact that up-
dating entire network parameters of a large-scale model is
prone to overfitting. In addition, our proposed pFedPG out-
performs FedVPT at every data size, confirming the ability
of our method to tackle heterogeneous local data distribu-
tions even in the few-data regime. From the above results,
the robustness of our pFedPG is successfully verified.

B.2. Impact of different pre-training models

In this section, we explore the ability of our proposed
pFedPG framework to incorporate different types of pre-
trained models. In addition to applying a ViT-B [5] pre-
trained from ImageNet-21K in a fully supervised manner,
we further evaluate the performance when the backbone
is replaced by MAE [8] and MoCo v3 [2], both of which
are trained in a self-supervised fashion. To be more spe-
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Figure 4. Impact of client data size on (a) Office-Caltech10 and (b)
DomainNet datasets.

cific, MAE [8] is trained using the masked image model
objective, while MoCo v3 [2] is learned by contrastive loss.
As shown in Table 2, we can observe that our proposed
pFedPG outperforms the baselines of FedAvg and FedVPT
regardless of the choice of pre-trained foundation models.
From the above results, we verify that our pFedPG is gener-
ally applicable to various types of pre-trained foundation
models. Furthermore, these findings confirm that when
data heterogeneity exists across all clients, simply averag-
ing whole model parameters or prompts from clients signif-
icantly diverges the aggregated model or prompts from each
local distribution. Instead, our proposed approach leverage
cross-client optimization directions to generate personal-
ized prompts, which enable efficient model personalization.
With the above results, the robustness and effectiveness of
our pFedPG are successfully confirmed.

B.3. Impact of different backbone architectures

In addition to adopting Vision Transformer (ViT) as our
backbone architecture, we additionally consider hierarchi-
cal Transformers (i.e., Swin Transformer [11]), which em-



Table 2. Analysis of different pre-training methods and model backbones on benchmark datasets.

Method Pre-training Backbone Office-Caltech10 DomainNet CIFAR-10 CIFAR-100

FedAvg [15]

Supervised (21K) [5] ViT-B 92.51 62.21 79.79 51.37
Supervised (21K) [11] Swin-B 53.31 50.64 67.54 34.63

MAE (1K) [8] ViT-B 45.36 19.52 72.04 36.33
MoCo v3 (1K) [2] ViT-B 91.23 63.99 75.32 44.33

FedVPT

Supervised (21K) [5] ViT-B 94.29 64.16 85.11 45.26
Supervised (21K) [11] Swin-B 57.49 57.23 95.66 80.91

MAE (1K) [8] ViT-B 13.88 14.06 76.75 26.30
MoCo v3 (1K) [2] ViT-B 93.87 63.09 85.56 45.24

pFedPG (Ours)

Supervised (21K) [5] ViT-B 96.81 71.64 87.57 55.91
Supervised (21K) [11] Swin-B 67.30 69.97 96.02 82.02

MAE (1K) [8] ViT-B 53.90 33.39 82.26 39.29
MoCo v3 (1K) [2] ViT-B 94.11 64.02 86.67 47.74

ploys multi-scale attention into locally shifted windows and
aggregate image patch embeddings at deeper layers. Fol-
lowing VPT [9], prompts at each client are inserted within
the local windows and are ignored during patch embedding
aggregation. In Table 2, we conduct quantitative compar-
isons with baselines of FedAvg and FedVPT using Swin-
B [11] pre-trained on ImageNet-21K as the backbone ar-
chitecture. As we can observe in Table 2, our pFedPG is
able to achieve generally preferable performances regard-
less of the backbone choice. The results summarized in Ta-
ble 2 successfully confirm the robustness of our proposed
pFedPG with various pre-training models and backbone ar-
chitectures for tackling challenging heterogeneous feder-
ated learning settings.

B.4. Additional comparisons with parameter-
efficient tuning methods

In Fig. 5, we further compare our pFedPG with other
types of parameter-efficient fine-tuning methods, including
Bias [1] and Adaptor [14], on Office-Caltech10 and Do-
mainNet datasets. Specifically, bias-tuning [1] only tunes
the bias term while keeping the remaining model parame-
ters frozen. On the other hand, adaptor-tuning [14] addi-
tionally inserts a few parameters (denoted as adaptors) in-
side the frozen backbone. We conduct baselines of FedAvg-
Bias and FedAvg-Adaptor by integrating bias-tuning and
adaptor-tuning into FedAvg [12] frameworks using ViT-
B as backbones. From the results in Fig. 5, we observe
that methods based on prompt-tuning (i.e., FedVPT and
ours) consistently perform superiorly against FedAvg-Bias
and FedAvg-Adaptor on both benchmark datasets. The
above results demonstrate the effectiveness of learning vi-
sual prompts to adapt pre-trained models to local data distri-
butions and confirm the capability of our proposed approach
to address data heterogeneity among multiple clients.
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Figure 5. Comparisons with parameter-efficient fine-tuning meth-
ods on (a) Office-Caltech10 and (b) DomainNet datasets.
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Figure 6. Comparisons with CLIP-based methods on DomainNet
dataset. Note that, CLIP-ZSL and CLIP-FC serve as baselines,
which are deployed at each client independently without addi-
tional prompt learning. The former directly applies the pre-trained
CLIP [16] model for inference, while the latter trains a classifier
on top of the CLIP visual encoder. In addition, PromtFL [7] up-
dates prompts at each client and then constructs a shared set of
global prompts at the server by averaging local prompts.

B.5. Additional comparisons with CLIP-based
methods

In addition to the quantitative comparisons with methods
on top of visual foundation models (e.g., supervised ViT [5],
MAE [8], and MoCo v3 [2], etc.), we also evaluate it against
methods based on CLIP [16], which trained on massive
image-text pairs. CLIP-zero denotes directly applying the
pre-trained CLIP model to each client without any fine-
tuning, while CLIP-FC indicates training fully-connected
layers as the classifier locally on top of the frozen CLIP vi-
sual encoder. In addition, PromptFL [7] follows CoOp [19]
that learns to insert prompts to the text encoder of a frozen
CLIP [16] at each client and then averages the prompts
trained from local clients at the server. Fig. 6 presents the
results on DomainNet, which show that our pFedPG would
be preferable among the methods considered. The above
results further verify the effectiveness of our personalized
prompt generation mechanism for enabling model person-
alization and handling heterogeneous FL scenarios.
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math, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and
Iryna Gurevych. Adapterhub: A framework for adapting
transformers. arXiv preprint arXiv:2007.07779, 2020. 3

[15] Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia,
Feifei Wang, Ehsan Adeli, Li Fei-Fei, and Daniel Rubin. Re-
thinking architecture design for tackling data heterogeneity
in federated learning. In CVPR, 2022. 1, 2, 3

[16] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 4

[17] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Adapting visual category models to new domains. In ECCV,
2010. 1

[18] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The
ham10000 dataset, a large collection of multi-source der-
matoscopic images of common pigmented skin lesions. Sci-
entific data, 2018. 1

[19] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. Inter-
national Journal of Computer Vision (IJCV), 2022. 4


