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A. Training Configurations
In the paper, we have extensively evaluated GEDepth

with four representative networks including DepthFormer
[20], PixelFormer [1], BinsFormer [21], and BTS [16],
which represent the state-of-the-art methods of monocular
depth estimation in both Transformers and CNNs. For fair
comparisons, we follow the original training configuration
of each method when training GEDepth.

• DepthFormer and PixelFormer: We set the bath size
as 16 on 8 GPUs and the initial learning rate as 1e-4.
We use the cosine annealing learning rate for 38.4K
iterations and apply the linear learning rate warm-up
strategy for the first 30% iterations.

• BinsFormer: We set the batch size to 16 on 8 GPUs
and the initial learning rate to 1e-4. We adopt the one-
cycle learning rate for 38.4K iterations and use the lin-
ear learning rate warm-up for the first 30% iterations.

• BTS: We set the batch size as 64 on 8 GPUs and the
initial learning rate as 1e-4. We utilize the cosine an-
nealing learning rate scheduler for 24 epochs without
using the warm-up strategy.

AdamW is used as the optimizer for all networks above.

B. Where to Embed Ground Depth
As illustrated in Figure 2, our approach originally em-

beds the ground depth in the input. Here we evaluate the
performance by embedding the ground depth in the encoder
as an alternative. Table 8 shows that embedding in the en-
coder also improves over the baseline DepthFormer, but is
inferior to the original embedding.

Method Abs Rel ↓ RMSE ↓ SILog ↓
DepthFormer 0.052 2.133 7.210
GE-Vanilla (encoder) 0.050 2.071 7.074
GE-Vanilla (input) 0.049 2.063 6.983
GE-Adaptive (encoder) 0.049 2.070 7.072
GE-Adaptive (input) 0.048 2.050 6.982

Table 8. Comparison of where to embed ground depth in GEDepth.
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Figure 11. Visualization of the predicted ground attention map (b)
in the scene (a) where ground is barely present.

Method Abs Rel ↓ RMSE ↓
DepthFormer 0.140 1.018
GE-Vanilla 0.073 0.543
GE-Adaptive 0.068 0.502

Table 9. Comparison of baseline (DepthFormer) with GEDepth-
Vanilla and GEDepth-Adaptive in the scenario where ground is
barely present as shown in Figure 11.

C. Scenes Lacking of Ground
Although ground is ubiquitous in the camera images cap-

tured by autonomous driving vehicles, here we probe into
how GEDepth performs in the rare case where ground is
barely present in the test set of KITTI. As shown in Fig-
ure 11, our approach is still able to predict reasonably accu-
rate ground attention map. Table 9 reports that the overall
result in this scene degrades compared to the common ones
where ground is apparently present, while our approach still
improves over the baseline.

D. Hyper-Parameter
We next evaluate how our approach behaves with differ-

ent values of λcls, the classification loss weight for ground
slope learning in Equation (10) of the paper. As shown in
Table 10, our approach is overall robust to the values of this
hyper-parameter in a reasonable range (λcls = 0.10 is the
default value used in our experiments).



Figure 12. Comparison of the depth prediction results by the state-of-the-art methods and our approach on three scenes of KITTI.

λcls Abs Rel Sq Rel RMSE RMSE-log

0.05 0.049 0.147 2.064 0.077
0.08 0.049 0.143 2.045 0.076
0.10 0.048 0.142 2.050 0.076
0.12 0.049 0.144 2.062 0.077
0.15 0.049 0.145 2.064 0.077

Table 10. Evaluation of the hyper-parameter λcls in Equation (10).

E. Qualitative Results
Figure 12 provides the qualitative results of our approach

(GEDepth-Adaptive) and the corresponding state-of-the-art
methods on the test set of KITTI. As can be seen in this
figure, our approach produces sharper depth prediction, and
we observe that the improvements on the distant objects and
fine structures are more evident.


