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1. Supplemental Material
1.1. Overview

To fully illustrate our experiments, we offer additional

experimental details and results. The following is a list of

our supplemental materials:

• Detailed algorithms of training and testing strategies in

dual diffusion architecture (DDA) (Section 1.2).

• More subjective comparison between our proposed

method and the state-of-the-art methods on synthetic

fisheye images correction (Section 1.3).

• Evaluating the quality of detail in synthetic fisheye cor-

rection results through a representative subset of com-

parison methods (Section 1.4).

• Additional real fisheye image correction results and

more comprehensive analysis of detail comparisons.

(Section 1.5).

• Testing the performance of different correction results

on downstream tasks. (Section 1.6).

1.2. Detailed Algorithms of DDA

To provide a detailed explanation of our dual diffusion

architecture (DDA), we have included two corresponding

algorithm tables (Algorithm 1 and Algorithm 2). The train-

ing strategy details are outlined in Algorithm 1. We uti-

lize the one-pass network (OPN) to predict distortion flows

W in both real and synthetic fisheye images, and perfor-

m pre-correction (Sp and Rp) to generate new condition-

s. Subsequently, we randomly sample a noise ground truth

ε ∼ N (0, I), and add it to both the synthetic image ground

truth Sgt and the real fisheye image Rf to generate corre-

sponding noisy data (S̄gt and R̄f ). Our conditional diffu-

sion module (CDM) takes S̄gt as input, and uses the new

condition yn (concatenated by Sp and Rp) to predict the

noise. The UDM directly takes R̄f as input to predict the
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noise. Finally, by supervising these two noises, our DDA is

able to optimize and train.

Algorithm 1 Training dual diffusion architecture

Requirement: Cθ, Uθ, OPNθ (conditional and uncondi-

tional diffusion module, one-pass network), Sf & Sgt:

paired synthetic images, Rf : real fisheye image

1: repeat

2: Rp ← OPNθ(Rf ), Sp ← OPNθ(Sf )
3: t ∼ Uniform {1, ..., T}
4: ε ∼ N (0, I)
5: Perform Gradient descent according

�θ||2ε− Cθ(
√
ᾱtSgt +

√
1− ᾱtε, ᾱt, yn)−

Uθ(
√
ᾱtRf+

√
1− ᾱtε,

√
ᾱtSgt+

√
1− ᾱtε, ᾱt)||1

6: until converged

Algorithm 2 Correct the synthetic and real fisheye image

1: Rp ← OPNθ(Rf ), Sp ← OPNθ(Sf )
� One-pass correction scheme

2: Rc(T ), Sc(T ) ∼ N (0, I)
3: for t = T, ..., 1, do

4: t ∼ Uniform {1, ..., T}
5: z ∼ N (0, I) if t > 1, else z = 0

6: Rc(t−1) =
1√
αt
(Rc(t) − βt√

1−ᾱt
Cθ(c̃t, ᾱt, yn))

Sc(t−1) =
1√
αt
(Sc(t) − βt√

1−ᾱt
Cθ(c̃t, ᾱt, yn))

� Inference correction scheme

7: end for

8: return Rp, Sp, Rc(0), Sc(0)

The testing strategy is illustrated in Algorithm 2. Bene-

fiting from our DDA, we provide two optional test method-

s (one-pass correction and inference correction). For one-

pass correction, we use the OPN obtained from our trained

DDA to directly predict the distortion flow W of the fish-

eye image (real or synthetic). We then use W to warp the

fisheye image and quickly obtain the correction result.

For inference correction, we optimize the network using



only OPN and CDM to predict the noise. We also use the

OPN to predict the distortion flow W and pre-correct the

synthetic or real fish images. Then we randomly sample

a noise ε ∼ N (0, I) as initial image. The initial image

and the pre-corrected result are fed into the CDM to predict

the noise for denoising. By repeatedly predicting the noise

and recalculating new images, we can obtain high-quality

results.

1.3. More Subjective Comparison

For a more comprehensive comparison, we have in-

cluded additional subjective comparison results of synthet-

ic fisheye image correction in Figure 1. As can be ob-

served, the images corrected using Blind [1] and DCCN-

N [2] still exhibit some distortion. Blind selectively only

corrects the center area during training, and DCCNN has

a restricted quantization interval, hence their correction on

large distortion images is not effective. DeepCalib [3] per-

forms better than Blind and DCCNN for a more reasonable

spherical fisheye model. However, this new model caus-

es some over-rectification and boundary loss. The rectifi-

cation results of DDM [4] and PCN [5] have no boundary

loss. Although they significantly improve correction qual-

ity through a multi-stage correction scheme, some artifact-

s appear in the results. In contrast, our dual diffusion ar-

chitecture combines the advantages of DDPMs and GANs.

It isolates structure correction from content reconstruction,

which improves the quality of corrected images. Our result-

s, particularly the inference result, show more precise struc-

tures and greater sharpness with no artifacts. It is worth

mentioning that our method offers two correction schemes,

both of which outperform the comparison method.

1.4. Evaluating on Representative Subset

Due to the limited resolution of the images, it can be

challenging to distinguish the texture differences between

the correction results of some effective methods, such as

DeepCalib, DDM, and PCN. Therefore, we have enlarged

the local area of correction results in Figure 2 to enable eas-

ier discernment of the texture details. As can be observed,

our rectification results exhibit clearer texture when com-

pared with the mainstream methods. In particular, the tex-

ture of our inference results is superior to other approaches.

Additionally, we have used the Sobel operator [7] to detect

correction result edges in Figure 3. The edge of DeepCal-

ib has obvious bending, while DDM and PCN exhibit some

edge confusion. In contrast, our edge is clean, demonstrat-

ing that our results are more precise in both structure and

texture than the comparison methods.

1.5. More Results on Real Fisheye Correction

We have included more testing results on real fisheye im-

ages in Figure 4-6 to demonstrate the practicability of our

dual diffusion architecture. Since the distortion of real fish-

eye images is greater than that of synthetic images, Blind

and DCCNN, which achieve incomplete correction on syn-

thetic images, are also incomplete for real fisheye images.

DDM and PCN can achieve better structure correction, but

the created artifacts are more noticeable since they were

unable to learn the distribution of real fisheye images dur-

ing training. The results of DeepCalib have no artifacts,

but it still exhibits over-rectification and boundary loss in

real fisheye correction. In contrast, our method achieves

complete correction, with no artifacts, over-rectification, or

boundary loss in our real correction results. In particular,

due to multiple iterative recalculations, our inference results

are far more visually appealing than comparison results.

1.6. Comparison on Downstream Tasks

To evaluate the efficacy of our correction method on se-

mantic segmentation, we leveraged a mainstream method

[6] to perform semantic segmentation on the correction re-

sults of different methods. The result of semantic segmen-

tation is shown in Figure 7. It is evident that the semantic

segmentation algorithm’s efficacy has increased with distor-

tion reduction. However, the comparison approaches can-

not provide appropriate semantic segmentation due to the

remaining distortion and artifacts. In contrast, our method

successfully removes distortion and artifacts, resulting in an

ideal segmentation effect. As there are no labels for real

fisheye images, we computed quantitative results on syn-

thetic images. We used the semantic segmentation results

of the ground truth as labels to calculate the pixel accura-

cy (Pixel Acc.) and mean intersection-over-union (mIoU)

of each correction method, as shown in Table 1. Compared

with other methods, our results obtain the best performance,

further demonstrating that our corrected images have supe-

rior quality.

Table 1. Performance comparision on semantic segmentation

Comparison Metric

Methods Type mIoU Pixel Acc.

Blind Regression 0.1666 68.46%

DCCNN Regression 0.1963 73.87%

DeepCalib Regression 0.3135 81.91%

DDM Generation 0.3557 84.62%

PCN Generation 0.3781 89.30%

Ours (one-pass) Generation 0.3575 85.93%

Ours (inference) Generation 0.4519 92.13%
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Figure 1. We conducted full comparisons between our methods and the state-of-the-art methods for synthetic image rectification. The
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Fisheye One-pass InferencePCNDeepCalib DDM

Figure 2. Evaluating on a representative subset of comparison methods, which include DeepCalib [3], DDM [4], and PCN [5]. We enlarge

the local region (marked by red boxes) to compare the image texture.
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Figure 3. Evaluating on a representative subset of comparison methods, which include DeepCalib [3] and PCN [5]. We highlight the

structural differences (marked by red arrows).
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Figure 4. Full comparisons of our methods with the state-of-the-art methods in real fisheye rectification. The state-of-the-art methods

include Blind [1], DCCNN [2], DeepCalib [3], DDM [4], and PCN [5]. Our results exhibit precise structure and clearer texture.
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Figure 5. Edge detection on correction results. We utilize arrows to indicate the areas that require attention (green arrows represent clear

structure and red arrows represent blurred structure). Our rectification results demonstrate a clearer structure.
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Figure 6. To provide a more intuitive comparison, we enlarged the local area marked by red boxes. Our approaches, which ensure the

integrity of the boundaries, result in precise corrected structures and clear content for correcting real fisheye images.
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Figure 7. Semantic segmentation results on corrected images. Our corrected images demonstrate improved performance in semantic

segmentation. Specifically, the semantic segmentation method [6] achieves more accurate segmentation of each object, providing further

evidence of the higher quality of our correction results.


