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1Inria, Université Côte d’Azur 2Toyota Motor Europe 3Woven by Toyota
{di.yang, yaohui.wang, antitza.dantcheva, francois.bremond}@inria.fr

{lorenzo.garattoni, gianpiero.francesca}@toyota-europe.com quan.kong@woven-planet.global

Appendix
In this supplementary material (Appendix), we provide

additional details w.r.t. our experimental analysis provided
in the main paper. In Sec. A, we provide details pertaining
to the experiments of our work. In Sec. B, we conduct addi-
tional quantitative comparisons and analysis (see Sec. B.1),
proceed to provide more qualitative results (see Sec. B.2)
that demonstrate the effectiveness of LAC for the tasks of
action segmentation and motion generation. Finally, we
provide more discussions on our work (see Sec. B.3).

A. Experimental Details
A.1. Implementation Details
Building Details of Networks: In the generation module,
the autoencoder has two networks, i.e., a skeleton sequence
encoder ELAC and a skeleton sequence decoder DLAC, built
as in [1]. Both networks are designed by multiple 1D tem-
poral convolutions to process the skeleton sequences. To
decode the skeleton sequence, DLAC includes upsampling
processes along the temporal dimension to reconstruct the
skeleton sequences.

The skeleton visual encoder in the contrastive modules
EV is composed of 10 convolutional building blocks. Each
building block contains a spatial network and a temporal
convolutional network to extract both spatial and temporal
multi-scale features from the skeleton sequence. For the spa-
tial processing, we utilize 1× 1 convolutions to expand the
data channels and then multiply the features by uniformly
initialized [11] and learnable dependency matrices (which
replace the adjacency matrices used in GCN-based meth-
ods [19, 17, 15, 3]). For the temporal processing, we utilize
9× 1 convolutions. The size of the temporal dimension of
embedded latent ‘Motion’ T ′ depends on the duration of the
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input sequence. For transfer-learning on action segmenta-
tion tasks, we attach the visual encoder to a fully-connected
layer followed by a Softmax Layer to predict per-frame clas-
sifications. The output size of each fully-connected layer
depends on the number of action classes. Then, we re-train
the network with action labels.

Training Details of Generation Module: The autoen-
coder can be previously and effectively trained on a syn-
thetic dataset using cross-reconstruction ground truth, i.e.,
the same motion pattern performed by different characters
and in different viewpoints obtained by rotated 3D and pro-
jected 2D skeletons. As Mixamo [12] is a 3D animation
collection, including elementary actions, and various danc-
ing moves, we first train LAC on Mixamo to disentangle the
‘Motion’ features and learn the action dictionary. Then we
conduct contrastive learning using the pre-trained and fixed
autoencoder, in order to train the skeleton visual encoder EV

in a self-supervised manner on the large-scale trimmed pre-
training dataset, Posetics. Finally, the trained visual encoder
is transferred onto target action segmentation tasks.

For training the autoencoder, we also adopt a Triplet
loss Ltrip for both driving and source skeleton sequences
as Ltrip = Ltrip M + Ltrip C . Specifically, the encoder
is used again to extract the disentangled ‘Motion’ part for
the previous generated skeleton sequence pm,c′ , denoted
as r̂m. Similarly, the encoded ‘Static’ part of pm′,c is de-
noted as r̂c. This loss aims to enhance the mutual infor-
mation of rm and r̂m, which are the representations of the
same ‘Motion’ performed by different characters, to produce
character-invariant ‘Motion’ representations. Specifically,
we encourage the similarity between rm and r̂m, while dis-
couraging the similarity between r̂m and the other ‘Motion’
performed by the source sequence, rm′ . Similarly, we define
the ‘Static’ triplet loss in the same way. The loss components



Methods MSE
NKN [18] 1.51
MotionRetargeting2D [1] 0.96
ViA [21] 0.86
LAC (Ours)

Reconstruction Loss only 0.85
+Triplet Loss 0.83
+Temporal Consistency Restriction Loss 0.82

Table 1. Mean Square Error (MSE) on the Mixamo dataset for
analyzing the impact of loss functions of LAC.

are described as follows (the triplet margin α = 1.0):

Ltrip M = E[∥r̂m − rm∥ − ∥r̂m − rm′∥+ α]+,

Ltrip C = E[∥r̂c − rc∥ − ∥r̂c − rc′∥+ α]+.
(1)

As the use of reconstruction loss only for sequence-level
generation produces large errors for end joints such as hands
and feet, which gives rise to the foot-skating phenomenon.
We argue that the reconstruction loss constrains the network
to generate the original skeletons with minimum global er-
rors for all joints, however, it misses the important temporal
consistencies of each individual joint. We thus explicitly
adopt a Temporal Consistency Restriction loss for all V
body joints (noted as an ensemble J ), which constrains the
velocity—i.e., joints shifting along the temporal dimension—
of the skeleton sequence (see Eq. 2).

Lvel = λE[
∑
n∈J

∥∥Vn

(
DLAC(r̂m, r̂c)

)
− Vn(pm,c)

∥∥2
], (2)

where Vn denotes the velocity of the n-th joint, which can
be calculated by the distance between this skeleton joint at
frame τ -th and at frame τ + 1-th. λ indicates the weighting
factor of the velocity loss that is set as 0.1. Adding these two
losses (Lgen = Lrec + Ltrip + Lvel) can slightly improve
the skeleton generation accuracy (see Tab. 1).

Training details of Contrastive Module: We adopt UNIK
as the visual encoder with the same hyper-parameter settings
as [20]. For self-supervised pre-training on Posetics, we
follow [9] for all related hyper-parameter settings for train-
ing the contrastive model MoCo [10]. For the momentum
encoder, we use a queue storing N =8192 negatives with
mbase =0.994 and we use a 2-layer projection MLP. The
temperature Temp is set as 0.1. We adopt a half-period
cosine schedule [9] of learning rate decaying, with base
learning rate 0.1 and the maximum training iterations 200.
For downstream action segmentation tasks, we use an initial
learning rate of 0.1 for 50 epochs with step LR decay with a
factor of 0.1 at epochs {30, 40} for all the three evaluated
datasets. Weight decay is set to 1× 10−4 for final models.
For action segmentation on TSU, Charades and PKU-MMD,
we adopt a temporal sliding window with sizes 300, 64,
300 frames respectively along the untrimmed sequences for
training the visual encoder. 2D skeleton inputs (on TSU

TSU-CS Skeleton ∆AP TSU-CS RGB ∆AP
Use oven +83.3 Wipe table +52.8

Dump in trash +78.7 Dump in trash +40.3
Stir +78.3 Put something in sink +39.6

Wipe table +75.4 Use oven +35.9
Spread jam or butter +54.2 Walk +32.5

Pour grains -17.0 Pour water -31.2
Use fridge -18.3 Write -34.6

Write -29.7 Drink From can -36.1
Read -31.1 Drink Fromg lass -37.9

Use glasses -46.3 Eat at table -43.0

Table 2. Classes that benefit the most and the least with LAC
on TSU CS. We sort the classes by their differences on Average
Precision (∆AP) compared to previous SoTA skeleton method (left)
and RGB method (right).

Figure 1. Composable activity in the TSU video. The frames
contain two co-occurring (composable) actions: “Walk” and
“Wipe table” that are correctly classified by LAC.

and Charades) are pre-processed with normalization and
centering following [16].

B. Further Analysis
B.1. More Quantitative Comparisons with SoTA

In this section, we conduct additional quantitative analysis
and discussion to further evaluate our method.

Per-class Comparison with SoTA on TSU: We have
shown that skeleton action representation learning can
achieve compelling results in several real-world action seg-
mentation tasks. We here provide an in-depth analysis on
our main target in-door daily living action segmentation re-
sults. We list the TSU classes that benefit the most and
the least from our visual encoder of LAC on TSU CS set-
ting compared to previous skeleton-based SoTA method [6]
and RGB-based SoTA method [5], respectively (see Tab. 2).
We find that in our method with composed skeleton action
representation learning and end-to-end find-tuning, the vi-
sual encoder is able to effectively classify the motion-based
actions such as “Use oven” and “Wipe table” and actions
that may co-occur as “Walk” and “Wipe table”, see Fig. 1.
At the same time, it is being challenged in distinguishing
some specific fine-grained and object-oriented activities in-
cluding “Pour grains”, “Pour water”, “Pour.From glass”,
“Pour.From can”. We believe that, this is due to the fact
that we use skeleton data, which only focuses on the human
and ignores the object information. To tackle this challenge
and to further improve the segmentation performance, future
work will extend our method to RGB data [2], aiming to



TSU CS (%) CV (%)
w/o Composition 29.8 13.8
Mix-up 30.2 16.7
LAC 33.8 21.9

Table 3. Comparison with Skeleton Mix-up on TSU.

TSU CS (%) CV (%)
2DMotionRetargeting [1] 30.7 17.5
LAC 33.8 21.9

Table 4. Comparison with data augmentation via previous SoTA
motion generation model [1] on TSU for action segmentation.

synthesize videos with composable motions, which remains
an open problem. Learning action representations on top of
the synthetic videos, the visual encoder is able to capture
the object information, while maintaining motion aware-
ness. Moreover, as we have demonstrated that pre-training
can be effectively performed without action annotation, we
can conduct more experiments with larger collected datasets
including synthetic and real-world videos.

Comparison of LAC with Skeleton Mix-up: As combin-
ing multiple motions by coordinates addition (i.e., skeleton
mix-up) without disentangling ‘Static’ from ‘Motion’ can
also generate composable skeletons, to further study the
impact of the action composition module, we compare the
action segmentation results of LAC with skeleton mix-up on
the TSU dataset (results are shown in Tab. 3). It suggests
that simple mix-up generates many non-realistic motions
that are less helpful for improving the representation ability
compared to compositing and generating motions from the
latent code based on the learned Action Dictionary.

Comparison with SoTA Skeleton Generation Model on
Action Segmentation: Different from previous SoTA gen-
eration model [1], LAC is able to perform action composition
via Latent Action Dictionary (Dv) which is a novel contribu-
tion. To demonstrate the effectiveness of the proposed action
composition module, we show the better generation quality
of LAC compared to the previous generative model [1] in
Tab. 6 in the main paper. In this section, we further compare
action segmentation performance of LAC with [1]. Specifi-
cally, we perform cross-view motion retargeting for a pair of
input skeleton sequences using [1] and we take the generated
skeletons for contrastive learning to pre-train the skeleton
visual encoder. Then we compare the action segmentation
accuracy using such pre-trained skeleton visual encoder to
LAC. The results in Tab. 4 show the impact and effectiveness
of the action composition module in LAC.

B.2. More Qualitative Results
In this section, we provide additional visualizations for

further analysis of the proposed LAC.

Motion Generation: Fig. 2 shows an example of motion
composition on the TSU dataset. It suggests that the high-

Video	1

Video	2

Generation:	Motion	12

Video	3

Video	4

Generation:	Motion	34

Figure 2. Real-world Motion composition visualization. The two
pairs of input videos and corresponding skeleton sequences have
simple motions. The generated skeleton sequences are composed
by two motions.

𝒅𝑚80 a𝑚80 +- 𝒅𝑚100 a𝑚100 +-

𝒅𝑚20 a𝑚20 +- 𝒅𝑚40 a𝑚40 +- 𝒅𝑚60 a𝑚60 +-

𝒅𝑚120 a𝑚120 +-

Figure 3. Linear manipulation of six ‘Motion’ directions in
Dv on a skeleton sequence. Results indicate that each direction
represents a meaningful motion transformation from a ‘reference
pose’ marked in the red box.

level motions of different sequences can be composed even
in the challenging cases of real-world videos with occlusions.
Even if sometimes the composed action is not fully realistic,
it can still increase the complexity and the diversity of the
skeleton sequences, so that the visual encoder trained with
such sequences can have a strong representation ability for
action segmentation.

Visualization of More Motion Directions: In the main
paper (see Sec. 4.3), we demonstrate that each motion di-
rection represents a basic high-level motion transformation,



Figure 4. Visualization of representations via tSNE on Mixamo
to demonstrate that the ‘Motion’ and ‘Static’ features are well
disentangled by LAC. Motion features are labeled by motions (left)
‘Static’ features are labeled by View angles (right).

whereas the corresponding magnitude represents the range
of the motion. To further understand the learned ‘Motion’
features, we generate novel different skeletons for a single
input skeleton sequence using its disentangled ‘Static’ fea-
tures rc combined to different rm, respectively obtained by a
linearly grown ami on its corresponding ‘Motion’ directions
dmi (see Fig. 3 for visualizations of other six directions ex-
cluding the ones in the main paper), where other magnitudes
on directions except dmi are set to 0. See the attached video
for dynamic visualizations.

Visualization of Disentanglement: In the training stage,
we conduct the motion retargeting task to disentangle the
‘Motion’ features from ‘Static’ (‘viewpoint’, subject’, etc.)
for skeleton sequences and learn the action dictionary. To
demonstrate that the ‘Static’ and ‘Motion’ are well disentan-
gled by the proposed framework after training, we visualize
the representations of all Mixamo skeleton sequences with
t-SNE. For the motion representations, we only take the
‘Motion’ part disentangled by LAC of all the sequences with
different motions and viewpoints and the motions are la-
beled with different colors (see Fig. 4 (left)). The results
show that the sequences with the same motions and different
viewpoints are clustered together. Similarly, we use view-
points to demonstrate the ‘Static’ part. The results show
that sequences with the same viewpoints, however different
motions are clustered together (see Fig. 4 (right)). Such qual-
itative results validate that the ‘Static’ and ‘Motion’ parts of
2D skeleton sequences have been effectively disentangled.

B.3. More Discussions

Motivation of Feature Disentanglement: Recently, some
supervised skeleton sequence processing methods [8, 14, 4,
7, 19] proposed to separately process the skeleton structure
(spatial information of different joints) and the motion (tem-
poral dynamics of each joint) to extract skeleton features
using action labels. However, they did not clearly capture
‘Motion’ coded in the features. In contrast, LAC is a self-
supervised method aiming at learning the static-disentangled
primitive motion on top of the features. Thanks to the disen-
tanglement of the features, LAC can generate new actions
for data augmentation by simply performing arithmetic oper-

Datasets (Trimmed) CrosSLR [13] w/o LAC LAC
NTU-RGB+D CS(%) 77.8 39.1 78.0
NTU-RGB+D CV(%) 83.4 48.0 83.9
Toyota CS(%) 47.5 24.6 47.9
Toyota CV2(%) 50.8 20.7 51.1

Table 5. We show that the skeleton visual encoder pre-trained by
LAC is applicable for improving action recognition performance.

ations on the motion features to learn more generic action
representations. The learned representation by LAC can
benefit more challenging segmentation tasks.

Application of LAC on Action Recognition: LAC is
mainly focus on improving the representation ability of
complex actions in untrimmed videos. The generated com-
posable actions by LAC are significantly helpful for action
segmentation tasks, where multiple actions can be performed
in the same frame. However, such complex actions can also
improve the expressive power of the visual encoder for gen-
eral action recognition (i.e., classification) tasks. Hence, in
Tab. 5, we show that LAC is also able to improve the action
classification performance on multiple trimmed datasets in
the linear settings [13] compared to random initialization
without pre-training by LAC and LAC gets similar results
with previous SoTA [13] classification method. Our goal
was not to claim superiority over SoTA in classification tasks,
instead, we target generic action representation learning that
can benefit the more challenging action segmentation task.

Multi-people Interaction: LAC is applicable for interac-
tion activities with multiple people. In the pre-training stage,
we conduct motion retargeting for all detected people, one by
one. In the action segmentation stage, we process the people
in the same video one by one using the pre-trained visual en-
coder and merge the features of each person to predict their
interactive action. However, when doing action composition
for multiple people, the generated actions may not always be
realistic, despite that, training the visual encoder with such
composed actions can still improve its representation ability.

Computation Cost: The pre-training of LAC on Posetics
dataset needs around 6.0 hours for SSL (and 4.6 hours if
supervised learning) using 4 × GPUs (Nvidia Tesla V100).
Then we fine-tune the visual encoder on downstream bench-
marks, e.g., for 2.2, 1.0 and 2.0 hours on TSU (CS), Charades
and PKU-MMD (CS).

Challenge and Future Work: Besides the human-object
interaction (see Sec. B.1) and multi-people interaction (see
Sec. B.3), an interesting challenge is to generate diverse
and still realistic skeleton sequences for training the visual
encoder. One of the future directions could be to add more
constraints on the generated skeletons e.g., adversarial loss.
Moreover, in this work, we establish a clear meaning for
each direction by linear manipulation. We will explore in
the future an effective way to learn clear semantics.
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