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1. Further Implementation Details

Our experiments are conducted on 8 GPUs and imple-
mented by PyTorch [11]. Following [6, 2], we set T = 1000
and the diffusion process with linearly decreasing {αt}
from α1 = 1 − 10−4 to αT = 0.98. Different from pre-
vious text-to-image practices [10, 12, 15] which use pre-
trained linguistic models to obtain text embeddings, LAW-
Diffusion is trained from scratch by jointly optimizing the
spatial dependency parser that generates the layout embed-
ding L, and the noise estimator ϵ̃θ(xt, t|L) using the VLB
loss defined in Eq. (6) of our paper. We use the same diffu-
sion training strategies and U-Net architectures as ADM [2].
As for the generation of the layout embedding L, we set the
dimension of class embedding as dc = 32 and the patch size
of region fragments as P = 8. Then a two-layer MHSA
with 8 attention heads and a learnable aggregation token
v[Agg] ∈ RP×P×dc , is implemented as the fragment aggre-
gation function in Eq. (8-11) of our paper.

Following [7, 15], we implement the conditional model
ϵθ(xt, t|L) and unconditional model ϵθ(xt, t|∅) in Eq. (12)
as a single conditional model with 10% probability of re-
placing the conditional input L by a learnable null embed-
ding ∅. Since the computational overhead is quadratic to
the size of input image, directly training the 256× 256 dif-
fusion model in the pixel space would be costly expensive.
Following [3, 14], we employ VQ-VAE [13] to downsam-
ple the 256 × 256 images to 64 × 64 low-dimensional la-
tent representations. Therefore, our LAW-Diffusion is per-
formed in the original pixel space for the sizes of 64×64 and
128×128, while it is trained in the compressed latent space
for the size of 256×256. The ultimate 256×256 synthesized
images are decoded from the denoised 64× 64 latent codes
using the decoder of VQVAE. In this way, we also demon-
strate that LAW-Diffusion is a general and flexible model,
which is effective for the generation in both pixel space and
compressed latent space. For the hyper-parameters of our
adaptive guidance in Eq. (15), we choose ωmax = 3 and
ωmin = 1 and use the cosine-form annealing function.
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Figure 1. Comparison of the generated images between LAW-
Diffusion (w/o loc) (baseline) and LAW-Diffusion. The images
produced by LAW-Diffusion (w/o loc) exhibit noticeable spuri-
ous artifacts and distortions when multiple objects are overlapped
and occluded. By contrast, LAW-Diffusion generates objects with
photorealistic textures and coherent contextual relationships. Best
viewed in color.

As for our proposed new evaluation metric, i.e., Scene
Relation Score, we use VCTree-EBM-Predcls[16] pre-
trained on Visual Genome [8] from https://github.
com/mods333/energy-based-scene-graph as
the scene graph generator to measure whether the correct
relations are captured by our image generator. We report the
mean Recall@K(mR@K) given by VCTree-EBM-Predcls
as our Scene Relation Score (SRS).

2. Further Ablation Study

In Sec 4.4 of our paper, we have introduced our base-
line diffusion model, namely LAW-Diffusion (w/o loc).
It trivially extends ADM [2] for the task of L2I using a
class-aware attention mechanism that has been widely em-
ployed in prior works [5, 18]. The Tab. 3 in our paper pro-
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Figure 2. Visualization of the attention maps of our location-aware cross-object attention. Each column indicates the attention maps from
the aggregation tokens to the fragments of different object region maps. Each row shows the attention maps of an attention head in specific
layer. The red frames in attention maps represent the bounding boxes of objects. Best viewed in color.



vides a quantitative comparison between the baseline LAW-
Diffusion (w/o loc) and our LAW-Diffusion, verifying the
effectiveness of our location-aware cross-object attention.
Here we provide a qualitative comparison between these
two models (128 × 128), which both utilize the adaptive
guidance strategy, i.e., ωt : 3↘1. From Fig. 1, we observe
that the images generated by LAW-Diffusion (w/o loc) ex-
hibit noticeable blurry artifacts and distortions in the case
where multiple objects are overlapped and occluded. By
comparison, LAW-Diffusion is able to parse the spatial de-
pendencies among instances that co-occur at the same po-
sition, which enables it to synthesize instances in the scene
with clear shape and textures. As illustrated in the second
row of Fig. 1, the teddy bears generated by the baseline
LAW-Diffusion (w/o loc) are blended together with severe
distortion. In contrast, LAW-Diffusion can generate identi-
fiable teddy bears with photorealistic textures and coherent
spatial relationships, thus demonstrating the effectiveness
of our location-aware cross-object attention.

3. Visualization of Cross-object Attention
To provide more insights into how LAW-Diffusion cap-

tures spatial properties using our cross-object attention
mechanism, we visualize the attention maps of the location-
aware cross-object attention in Fig. 2. As mentioned pre-
viously, our cross-object attention module is implemented
using a segment-level two-layer eight-head self-attention
mechanism, as described in Eq. (8-11) of our paper. For
each attention head, we compute the attention scores be-
tween the aggregation token v[Agg] and the object region
fragments {vji }

Nmax
i=1 at the same location (the jth fragment).

Then we collect the attention scores of different positions
and rearrange them to attention maps, which is shown in
rows in Fig. 2. By comparing the bright areas with high
attention activation within each object’s attention map to
their respective bounding boxes (shown as red frames here)
in Fig. 2, we can conclude that our location-aware cross-
object attention mechanism effectively integrates regional
information from different objects, including their spatial
occlusion relationships. For example, by observing the at-
tention map (with blue frame) of “grass” of layer2 head 2
in Fig. 2, we find LAW-Diffusion definitely perceives that
a bench is on the grass and the sand is partially occluded
by the grass. Exploiting such spatial dependencies benefits
coherently generating these co-existing objects.

4. Details about Layout-aware Latent Grafting
As the supplement to Sec 3.4 of our paper, Algorithm 1

summarizes the instance reconfiguration process using our
layout-aware latent grafting strategy. In the cases of adding
and removing objects, the reconfigured layout Γ∗ is distinct
from the source layout configuration Γ. When restyling an

Algorithm 1 Layout-aware Latent Grafting Strategy
Input: a source image x0 generated by LAW-Diffusion from
a layout configuration Γ, with its layout embedding L and
latents {xt}Tt=1; the learned layout-aware generation pro-
cess of LAW-Diffusion {pθ(xt−1|xt,L)}1t=T ; a reconfigured
layout Γ∗ where an object o∗ within bounding box b∗ is
added/removed/restyled relative to Γ; a reconfiguration mask
M indicating the rectangular region within b∗ for object o∗; the
new layout embedding L∗ corresponding to Γ∗.
Output: a reconfigured image x∗

0 where object o∗ within b∗ is
added/removed/restyled relative to x0 while the other contents
in x0 are preserved.
x∗
T ∼ N (0, I);

for all t from T to 1 do
x̂∗
t ← x∗

t ⊙M ⊕ xt ⊙ (1−M);
x∗
t−1 ∼ pθ(x

∗
t−1|x̂∗

t ,L∗);
end for
return x∗

0

existing object in the source image x0, the reconfigured lay-
out Γ∗ remains identical to Γ (L∗ is also identical to L be-
cause the spatial dependencies are invariant) while the local
restyling is determined by the re-initialization of x∗

T relative
to the source noise xT . The input source latents {xt}Tt=1 in
Algorithm 1 can be obtained either by fetching them from
the latent memory bank of the previous generation process
guided by L, or by approximating them using Eq. (3) of
our paper, since the previously generated x0 is known. It
is worthy noting that, the reconfigured latent x∗

t is guided
by a holistic semantics from L∗ rather than the local ma-
nipulation within b∗ which solely encodes the object-level
information. Hence, our innovative design offers a simple
yet effective way to preserve global coherence in instance
reconfiguration. More examples of reconfiguration are ex-
hibited in Fig. 3.

5. Detailed Object-level Control
As a supplement, our LAW-Diffusion exhibits the ability

of controlling the objects’ attributes when sufficient fine-
grained annotations are provided. For example, we select
about 1K images from COCO-Stuff and manually annotate
11 colors for the objects in the images. Then we append a
color-embedding block to the object class-embedding block
of LAW-Diffusion, and tune it with our labels. As shown
in Fig. 4, LAW-Diffusion is empowered to generate/restyle
images with controlled colors. It shows that our L2I model’s
potential to control object’s detailed attributes if auxiliary
supervisions are provided.

6. Diverse Generation
As shown in Fig. 5, LAW-Diffusion can generate di-

verse images with completely different styles while ensur-
ing faithful adherence to the input layouts in all synthesized
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Figure 3. More examples of instance reconfiguration generated by
LAW-Diffusion using our layout-aware latent grafting strategy.

scenes.

7. Human Evaluation

To perform a human evaluation and further assess the
fidelity and coherence of the generated images, we con-
ducted a user study. Specifically, each participant is ran-
domly assigned 20 groups of 256×256 images synthesized
by LostGAN-V2 [17], LAMA [9], Frido [4], TwFA [18],
and our LAW-Diffusion. Each group of images was gener-
ated from the same layout by different methods. For exam-
ple, four groups of sample images are presented in Fig. 6.
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Figure 4. Examples of controlling objects’ colors.

For each layout, a participant was asked to select his/her
most preferred image based on the photorealism and its ad-
herence to the layout. Additionally, the participant is also
asked to give a rating of 1 to 5 for the coherence and har-
mony of relations among contextual objects in each gener-
ated image.(1→5:worst→best)

The results of human evaluation from 539 users are sum-
marized in Fig. 7 and Tab. 1. As shown in Fig. 7, the
comparison of preference percentages demonstrates that the
scene images generated by LAW-Diffusion were preferred
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Figure 5. Illustration of diverse generation. Each row shows the
diverse images synthesized from the same layout on the left.
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Figure 6. Sample images provided to the participants of the human
evaluation.

more by the human evaluators. The results of relation coher-
ence rating presented in Tab. 1 provide additional evidence
that LAW-Diffusion is able to produces scenes with more
coherent object relationships.

Methods SRS(mR@20) Percentage(relation coherence rating) Average Rating1 2 3 4 5

LostGAN-V2 [17] 0.1241 26.7% 24.3 % 27.3% 15.2% 6.5% 2.50
LAMA [9] 0.1260 20.5% 26.6% 25.5% 17.5% 9.9% 2.70
Frido [4] 0.1375 8.3% 15.5% 34.3% 20.4% 21.5% 3.31

TwFA [18] 0.1407 4.7% 9.4% 28.9% 32.8% 24.2% 3.62
LAW-Diffusion 0.1485 2.1% 6.5% 16.9% 38.3% 36.2% 4.00

Table 1. Results of relation coherence rating for different methods.

8. The effectiveness of Scene Relation Score
To verify the effectiveness of our propose new metric,

the Scene Relation Score (SRS), we examine its relation-
ship with the existing metrics FID/IS and the human rating
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Figure 7. The preference percentages for different methods.

Figure 8. The relationship between SRS and FID/IS.

Figure 9. The relationship between SRS and human rating.

results given in Tab. 1.
We examine the relationship between SRS (in terms of

mR@20) and FID/IS in Fig. 8. To perform this analysis, we
randomly sampled 10 checkpoints of our model and eval-
uated their SRS, FID, and IS scores. First, the blue and
orange solid lines generated by linear regression show that
a higher SRS score often implies a better FID/IS score. Sec-
ond, the red dotted lines demonstrate that two models may
have different SRS scores even though they have similar
FID/IS scores. Therefore, our proposed SRS metric is con-
sistent with the widely used metrics such as FID and IS,
while also providing a more comprehensive measure of a



model’s generative performance. Moreover, the results in
Fig. 9 reveal that SRS (in terms of mR@20) is consistent
with the human ratings of scene relation coherence, provid-
ing further evidence of its effectiveness.

9. More Generated Samples
In this section, we show more generated samples of our

LAW-Diffusion on COCO-Stuff [1] and VG [8]. Fig. 10
and Fig. 11 respectively show the results of 64 × 64 and
128× 128. Additionally, Fig. 12 provides more 256× 256
samples and demonstrates the effectiveness of accurate se-
mantic alignment and high fidelity.

10. Discussions
Potential negative social impact While all benchmarks
used in this paper are public and transparent, it is impor-
tant to consider the negative impacts that may occur when
our model is fine-tuned on socially biased datasets collected
by other users. In this case, our generative model may pro-
duce undesired images that incorporate harmful social bi-
ases, which potentially leads to privacy concerns and issues
of intellectual property infringement.
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Figure 10. More generated 64× 64 samples of LAW-Diffusion on COCO-Stuff [1] and VG [8]. Best viewed in color.



Figure 11. More generated 128× 128 samples of LAW-Diffusion on COCO-Stuff [1] and VG [8]. Best viewed in color.



Figure 12. More generated 256 × 256 samples of LAW-Diffusion on COCO-Stuff [1] and VG [8] with the input layout on the left. Best
viewed in color.


