
Label-Guided Knowledge Distillation for Continual Semantic Segmentation
on 2D Images and 3D Point Clouds—Supplementary Material

A. Introduction
In the supplementary material, we provide more analy-

sis, details and visualization results, which can be summa-
rized as:

• We analyze why the standard KD suffers from the
novel-background confusion.

• We demonstrate the difficulty of our proposed ScanNet
benchmark for CSS with the class frequency statistics.

• We present qualitative visualization results to show the
superiority of our method against the other competing
approaches.

• We provide more implementation details to ensure re-
producibility.

B. Analysis and Discussion
B.1. Standard knowledge distillation

Despite its great success in the context of image clas-
sification [3, 7], the standard distillation loss indeed has a
critical drawback when a special class background gets in-
volved, e.g., object detection [12], segmentation [8]. To re-
cap, the standard knowledge distillation loss ℓkd adopted in
CSS by ILT [8] can be formulated as:
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where q̂tx(i, c) refers to the probability of class c for element
i predicted by fθt but re-normalized over all old classes:
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The above formulation completely ignores the semantic
shift of the background class across different incremental
steps: an element xi assigned with background label b at the
last step t− 1 might become a new (novel) class yi ∈ Ct \ b
at the current step t. For such new class elements, the old
model in fact outputs a high background score as they are
masked as the background at the last step. Through knowl-
edge distillation, the new model is encouraged to similarly

predict a high background score for these, however, new
class elements {xi|yi ∈ Ct \ b}. Consequently, it will mis-
lead the new model to wrongly classify the novel class el-
ements into the background, which hinders the learning of
novel classes and causes novel-background confusion.

C. More Statistics for the ScanNet Benchmark

For a better view of ScanNet, we provide the class fre-
quency statistics of the whole dataset, including both train
and validation sets, in Fig A. Specifically, the scene-wise
frequency indicates the number of scenes that a certain class
appears in, while the point-wise frequency indicates the to-
tal number of points belonging to a certain class across all
scenes. Notably, we define the class order for CSS accord-
ing to the descending order of the scene-wise frequency,
i.e., {other furniture, floor, wall, door, chair, table, win-
dow, cabinet, desk, picture, sink, sofa, bed, curtain, toi-
let, counter, refrigerator, bookshelf, bathtub, shower cur-
tain}. This means that the novel classes to be learned in
each step are set to be those rare ones, a.k.a. tail classes in
the long-tail field. Take 14-5 setting for instance, the last
five rare classes, i.e., counter, refrigerator, bookshelf, bath-
tub, shower curtain, form the novel class set, and likewise
for the other settings. Meanwhile, the point-wise frequency
for four out of five potential novel classes (last five classes)
happens to be rare as well, i.e., counter, refrigerator, bath-
tub and shower curtain. This suggests that such objects are
either small or sparse in the captured scenes, causing addi-
tional learning difficulty especially under the CSS scenario.
In summary, the two difficulties mentioned above ensure
that our proposed benchmark is highly challenging.

D. Rationale for Ablation Study Setups

We conduct the ablative studies upon VOC 15-5 setting
with PLOP [4] as the baseline. This is because PLOP is a
significant milestone and has served as the basis for several
subsequent works [9, 13]. Moreover, the VOC 15-5 setting
involves only one incremental step with class 16 to class
20 consistently being new classes. In contrast, in the VOC
15-1 setting that includes multiple steps, class 16 to class
19 could be either a new or an old class, depending on the



(a) Statistics of scene-wise frequency. (b) Statistics of point-wise frequency.

Figure A: The class frequency statistics of our proposed ScanNet benchmark for 3D continual semantic segmentation.

current learning step. However, in the ablation study, we re-
quire consistent metrics to observe both the forgetting issue
(1-15) and generalization capacity (16-20). Therefore, to
ensure that the metric 16-20 consistently reflects novel per-
formance while the metric 1-15 indicates base performance,
we choose the VOC 15-5 setting for the ablative studies.

E. Visualization
We provide qualitative visualization results in Fig. B

(on the next page) to show the superiority of our LGKD
against the other competing approaches under VOC 15-5
setting. To better compare the generalization ability and
old knowledge preservation capacity across different meth-
ods, we construct three groups of samples containing old
classes only to inspect the forgetting issue, new classes only
to verify the generalization ability and old & new classes to
showcase how well the model can strike a balance between
generalization (plasticity) and old knowledge preservation
(rigidity). The top half of the figure shows the results for the
baseline methods. Specifically, FT performs well in novel
classes while suffering from catastrophic forgetting in old
classes. With the standard KD, ILT [8] can better preserve
old knowledge, e.g., the bird (green) on the second row is
remembered. The recent method REMINDER [9] obtains
promising results except for the tv monitor on the fourth
row. As expected, Joint training yields the best among these
baselines as it does not suffer from the nature of continual
learning — catastrophic forgetting.

Additionally, the bottom half vividly demonstrates how
our LGKD addresses the novel-background confusion and
improves three existing state-of-the-art methods. Con-
cretely, MiB [1] and PLOP [4] develop a bias toward the
new classes and tend to misclassify the background as a

novel class. For instance, the background weed (row 2)
and stone (row 3) are classified as the new classes potted
plant (row 2) and sofa (row 3) respectively. In the last row,
the suitcase (background) is recognized as the new class
sofa. Obviously, our LGKD can effectively alleviate the
above novel-background confusion. For RCIL [13], it suf-
fers more seriously from the novel-background confusion
issue. For instance, it severely misclassifies the background
weed into the new class potted plant (row 2). Additionally,
it mistakes the bench (background) for the new class train
(row 5). By adding our LGKD, such confusion is mostly
alleviated, though with a failure case, i.e., row 3, and an
imperfect case, i.e., row 2.

F. More Implementation Details

2D image. Following the state-of-the-art methods [1, 4,
9, 13], we adopt the Deeplab-v3 [2] model with ResNet-
101 [5] as backbone and choose the output stride of 16. For
fairness, we follow the training details of our competitors
when comparing against them, except that we adopt syn-
chronized batch normalization, which we found beneficial
for CSS. The backbone is initialized with the ImageNet pre-
trained model [11]. The initial learning rate is set to 0.01 /
0.02 for the first learning step, and 0.001 / 0.002 for sub-
sequent steps on Pascal-VOC / ADE20k. Under all Pascal-
VOC settings, the batch size is 16 for the initial learning
step and 24 for subsequent steps. On ADE20k, the batch
size, consistent across all learning steps, is set to 12 for 100-
50 and 50-50 settings, and 16 for 100-10 setting. We train
the models for 30 / 60 epochs on two NVIDIA RTX 3090
GPUs for Pascal VOC 2012 / ADE20k, while [9] trains for
70 epochs with a batch size of 10 on ADE20k with a sin-



gle GPU. We notice that their prototype computation is not
synchronized across multiple GPU devices, thus it does not
support training on multiple GPUs. We crop the images to
512 × 512 during both training and testing, and apply the
same data augmentation strategies as [2]. For all bench-
marks, we report the mIoU results on the standard valida-
tion set.
3D point cloud. We use PointNet++ [10] with multi-scale
grouping as our base model. For each input scene, we ran-
domly sample 8192 points with replacement from a ran-
domly chosen 1.5m×1.5m area. Data augmentation strate-
gies (e.g., translation, rotation, re-scaling) are randomly ap-
plied during training. For testing, we split the whole scene
into 1.5m× 1.5m grids and apply the same point sampling
strategy as training. We use Adam [6] with an initial learn-
ing rate 10−2 for the first step and 5 × 10−3 for the subse-
quent steps and set the weight decay to 0. The learning rate
is decayed by 0.7 every 100 epochs. We train our network
for 500 epochs with a batch size of 32 on a single NVIDIA
RTX 3090 GPU. We remove possible duplicated points be-
fore calculating the IoU metric. Finally, we report the mIoU
results on the standard validation set.
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Figure B: Qualitative visualization results of baselines along with our LGKD under the VOC 15-5 setting. Our approach
outperforms the others on both base classes, e.g., cow, bird, person, chair, and novel classes, e.g., sheep, tv monitor, train,
sofa.


