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In the supplementary material, we firstly introduce
the data pre-processing in Section A. Then, we provide
the implementation details of MRM in Section B. The
comparison on the visualization of reconstructed im-
ages is exhibited in Section C. Finally, we discuss the
broader impact and limitations of our work in Section
D.

A. Data Pre-processing

In this section, we introduce the data pre-processing
including the dataset pre-processing, image pre-
processing and genetics pre-processing.

A.1. Dataset Pre-processing

To achieve a fair comparison, we follow previous
works [17, 20] and employ dataset pre-processing tech-
niques as following.

A.1.1 UK Biobank Genetic Modalities

During the pretraining phase using UK Biobank data,
we choose the following feature dimensions. For the
raw SNPs, we uniformly sample every 100th SNP from
22 Chromosomes (excluding the X and Y chromo-
somes), resulting in 7,854 SNPs per sample. For PGS,
we used 481 scores for a wide variety of different traits
downloaded from the PGS Catalog [16]. We created
burden scores for 18,574 protein-coding genes [17].

A.1.2 Diabetic Retinopathy detection (AP-
TOS)

For diabetic retinopathy detection, we adopt the AP-
TOS 2019 Blindness Detection dataset [1], containing
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3,662 retinal fundus images with five categories includ-
ing five levels of disease severity. Note that the cate-
gories are mutually inclusive, for instance, class three
also includes the levels of two and one. Therefore, we
formulate the task as a multi-class classification task
by employing multi-hot form for all labels. For ex-
ample, class three is encoded as [1,1,1,0,0] and two as
[1,1,0,0,0]. We divide the whole dataset into 80% as
the training set and 20% as the test set. The Quadratic
Weighted Kappa (QwKappa) [6] is adopted as the met-
ric to measure the agreement between the prediction
and ground truth.

A.1.3 Retinal Fundus Disease Classification
(RFMiD)

For retinal fundus disease classification, we uti-
lize the Retinal Fundus Multi-disease Image Dataset
(RFMiD) [13] including 3,200 images across 45 dis-
ease classes. Following prior work [17], we exclude two
classes (”HR” and ”ODPM”) since they have no posi-
tive cases, and use the remaining 43 classes for training
and evaluation. As mentioned before, we convert these
classes to multi-hot labels and solve the task as mul-
tilabel classification. We randomly split 80% as the
training set and 20% as the test set. The area under
the ROC curve (ROC-AUC) is used as the metric to
evaluate the classification results.

A.1.4 Pathological Myopia Segmentation
(PALM)

We use the Pathologic Myopia challenge dataset [8]
for pathological myopia segmentation, consisting of 400
images with segmentation masks, which contains three
categories including peripapillary atrophy (311 cases),
optic disc (all cases), and detachment (12 cases). Con-
sidering that the detachment is much rarely available,
we ignore it and merely consider two classes, i.e., the
peripapillary atrophy and optic disc to fine-tune the



model. We use 800 images as the training split and
400 images as test split. The dice score is adopted as
the segmentation evaluation metric.

A.1.5 Cardiovascular Risk Prediction (UKB)

To predict the cardiovascular risk factors of (sex, age,
BMI, SBP, DBP, smoking status) from retinal fundus
images, we utilize 102,219 images from the UKB [16]
database, which is randomly split 80% as training set
and 20% as test set. Two models are leveraged to train
the task. The first model aims to perform the classifica-
tion task (sex and smoking status to binary classifica-
tion). The second one targets to predict the continuous
variables including age, BMI, SBP, and DBP, formu-
lated as a regression task. Due to different scales of loss
values, we adopt two models for two tasks respectively.
We normalize the values of continuous factors by stan-
dardization (normalizing to zero mean and scaling to
unit variance). We finally impute the missing values of
the factors by adopting the mean value for continuous
factors and median value for discrete factors.

A.1.6 TCGA

For the pathology images-based pre-training and trans-
fer evaluation, we use TCGA-GBM with TCGA-LGG
dataset [18] to conduct the pre-training, which consists
of 736 paired samples of pathology slides and genetic
profiles. We resize the curated pathology slides with
the shape of 224 × 224 as inputs. Considering each
patient has multiple curated slides, we select one of
them associated with one genetic profile as an input
pair. During the phase of transfer evaluation on down-
stream dataset, we leverage glioma grading (GG) to
evaluate the performance. The GG can improve the
treatment planning for accurate determination. The
TCGA dataset contains WHO grading labels includ-
ing grade II, III and IV. We fine-tune the pre-trained
model on training set with 80% data split and evaluate
the performance on 20% data split. The accuracy and
ROC-AUC are employed as the metrics to measure the
classification results.

A.2. Image Pre-processing

A.2.1 Image Quality Control

The UK Biobank contains many retinal fundus images
with bad quality (e.g. completely black or extremely
overexposed). We conduct two steps of quality con-
trol to filter out the outliers. In the first step, we only
consider images in which a simple circle-detection al-
gorithm [?] can find a circle. Then, we discard the

top and bottom 0.5% brightest and darkest remaining
images.

A.2.2 Image transformations

The images are cropped to the circles detected by the
stage of image quality control, and reshape to 224×224.
In the pre-training phase, we randomly transform im-
ages by a rotation of up to 20◦ and flip the image
horizontally with a 50% probability. We also follow
the common practice of normalizing all image inten-
sities via the mean and standard deviation from Ima-
geNet [15].

A.3. Genetics Pre-processing

A.3.1 Raw SNPs

The raw SNPs are a cross section of all SNPs col-
lected on microarray chips, collecting above 800k
genetic variants in total across all chromosomes.
More information on data collection can be found at
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=263.
We encode each SNP in another way: 0 represents
no difference from the reference genome, 1 indicates
one copy of the chromosome differs and the other
does not, and 2 means both copies of the chromosome
differ. We use SNPs as continuous variables and fill in
missing values with mode imputation. To reduce the
number of feature dimensions from 800k, which are
hard to handle, we only take every 100-th SNP from
the full microarray since SNPs are strongly correlated
with the genome. We also exclude SNPs on the sex
chromosomes as they need special statistical treatment
and they are not common between genetic males and
females. Hence, we leverage 7,854 SNPs in our models.

A.3.2 Polygenic Risk Scores

For computing polygenic risk scores, we downloaded
all PGS weight files included in the PGS Catalog, a
collection of published PGS. The PGS files provide
weights for a linear model to compute risk scores from
the raw genetic data. To have a large intersection
of available SNPs for our UKB population and the
weights provided by the PGS catalog, instead of using
the raw microarray data from Appendix A.3.1, we
used imputed data. The imputed data uses prior
knowledge about correlations between SNPs collected
and not collected on the respective microarray (“link-
age disequilibrium”, LD) to infer the missing features
with high accuracy. Imputed data was precomputed
by the UKB, and more information can be found at
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100319.
Using the imputed data, we computed 481 polygenic
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scores for our cohort using the PLINK software [21],
ignoring scores that gave errors or that only recorded
genome positions in a different reference genome build.

We obtain all PGS weight files from the PGS
Catalog, which are drawn from the published PGS.
The PGS files provide weights for a linear model to
calculate risk scores from the raw genetic data. To
leverage more SNPs that are available for our UKB
population and the weights from the PGS catalog,
instead of the raw microarray data, we utilize imputed
data, which adopts previous knowledge about rela-
tions among SNPs collected and not collected on the
respective microarray to predict the missing features
with high accuracy. The UKB pre-processes the
imputed data, and more information can be found at
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100319.
With the imputed data, we calculate 481 polygenic
scores for our cohort using the PLINK software [17],
and neglect the scores that have errors or only using
genome positions in a different reference genome build.

A.3.3 Burden Scores

We utilize the Functional Annotation and Association
Testing Pipeline to add functional information to all
the genetic variants in the UK Biobank 200k exome
sequencing release [16]. We make burden scores for
all protein coding genes from protein loss of function
and missense variants that are likely to be harmful. We
only focus on rare variants with minor allele frequencies
below 1%. For these variants 41% are ”singletons”,
i.e. they merely appear once in our sample. We gave
each participant a binary vector of length 18,574 that
match the number of protein coding genes. For each
gene, the vector entry is 1 if the participant has at
least one possibly harmful variant in that gene, or 0
if no possibly harmful variants are seen in that gene
for that participant. This coding helps rare-variant
association studies to combine the effects of many rare
variants within genes, where it can increase statistical
power and release the computational cost of multiple
testing.

B. Implementation Details

Following prior works [7, 20], we adopt ViT-base as
the image encoder and SNN network as the genome en-
coder to learn representations. The ViT and SNN mod-
els are trained via AdamW [12] and Adam [10], respec-
tively, both with an initial learning rate of 1×10−3. We
use PyTorch [14] to implement our models, and train
all models for 50 epochs with the batch size of 256
for UKB and 8 for TCGA. In relation matching, for
efficiency, we randomly select 8 pair of multimodal fea-

tures to perform matching constraint for two datasets.
All comparisons [3, 4, 17, 7, 19, 2, 5, 11, 9] share the
same settings to achieve a fair comparison. The bal-
anced coefficient λ is 1.0, and the masking ratios τI , τG
for images and genetics are set as 75% and 50%, re-
spectively.

C. Visualization of the Reconstructed
Images

To qualitatively verify the effectiveness of relation
masking, we visualize the reconstruction images of
four samples from different methods. Figure 1 illus-
trates that MIM-based approaches [7, 19, 2, 5, 11, 9]
lose the tiny disease regions, while MRM can recon-
struct almost complete disease regions. These advan-
tages indicate that our relation masking in self- and
cross-modality levels can preserve the disease seman-
tics thereby improving the quality of the feature repre-
sentation.

D. Broader Impact and Limitations

The proposed MRM framework, consisting of rela-
tion masking and relation matching, can enable the
model to capture relation information by token-wise
feature masking and sample-wise global relation con-
straint, thereby learning better feature representation.
Extensive experiments across various downstream di-
agnosis tasks demonstrate that the MRM has supe-
rior transfer ability over state-of-the-art methods, and
it can also applies single image modality pre-training
to achieve compelling performance. Moreover, in this
work, we assume the data distribution between down-
stream datasets and the pre-training dataset is identi-
cal, and do not consider the issue of data domain shift.
Hence, in future work, we will improve our framework
towards data domain shift issue between pre-training
dataset and various downstream datasets.
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Figure 1. Comparison of reconstruction results of different methods. From left to right suggests the original input
and the reconstructed images by MAE [7], SimMIM [19], MultiMAE [2], M3AE [5], mc-BEiT [11], AttMask [9] and our
MRM. We can observe that MRM can preserve the disease regions framed in blue while MIM-based methods lose them.
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