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A. Overview
This appendix is organized as follows: Sec. B clarifies

the main differences from two relevant prior work, with
the quantitative comparisons. Sec. C includes more im-
plementation details. Sec. D conducts ablation studies on
the proposed approach, including the attribute adaptor, the
attribute classifier, the diversity-constraint strategy, and
the hyper-parameter β in Eq. (5). Sec. E presents the
quantitative comparison to prior approaches, demonstrating
the effectiveness of our GenDA under the general few-
shot setting. Sec. F visualizes the latent representations
after adaptation. Sec. G analyzes the transformation (i.e.,
the learnable vector a in Eq. (3) for attribute adaptation,
which provides insights on how our algorithm works and
shows how the latent representations are transformed after
adaptation. Sec. H presents the additional comparison with
the style transfer method and investigates the visual relation
between and after adaptation.

Table A1: Comparison against relevant baselines.
One-shot (FID↓) MineGAN GenDA FD FD-all FD-trunc.
Babies 145.21 80.16 147.96 156.82 132.13
Sunglasses 98.34 44.96 87.32 96.48 81.94
Sketches 109.85 87.55 102.13 113.61 98.59

Table A2: Ablation study on architecture designs. A
two-layer multi-layer perceptron (MLP) is introduced as
the heavy version of the attribute adaptor and the attribute
classifier, respectively. FID (lower is better) is reported.

Models Babies Sunglasses Sketches
Heavy attribute adaptor 290.22 262.32 114.25
Heavy attribute classifier 132.14 115.88 109.23
Lightweight design 80.16 44.96 87.55

Table A3: Ablation study on attribute classifier of dis-
criminator.

One-shot on Babies FID↓ Prec.↑ Recall↑
Fine-tuning original one 92.53 0.65 0.019
Attribute classifier (Ours) 80.16 0.74 0.033

Table A4: Ablation study on the strength of diversity-
constraint strategy, which is noted as β in Eq. (5).
Here, a smaller β denotes a stronger diversity constraint.
Evaluation metrics include FID (lower is better), precision
(higher means better quality), and recall (higher means
higher diversity).

β FID Precision Recall
0.5 24.87 0.82 0.163
0.7 22.62 0.78 0.204
0.9 24.32 0.73 0.269
1.0 25.29 0.71 0.349

B. Differences from Prior Efforts
This work tackles how to fine-tune a generator under a

limited data regime (i.e., as few as only one image). To al-
leviate the main problem (i.e., the diversity collapse caused
by over-fitting), we follow the commonly used strategy in
prior literature, which is to reduce the number of learnable
parameters. Under such a case, however, we manage to
reuse the prior knowledge to the most extent (i.e., only
training one layer in the generator and the discriminator
each), and confirm that such an efficient scheme indeed
facilitates generative domain adaptation and substantially
outperforms existing alternatives. Here, we further clarify
the differences from two previous work that also consider to
freezing parameters i.e., FreezeD [8] and MineGAN [13].
Differences from MineGAN. 1) MineGAN works in two
stages, where it first learns latent space transformation (with
a frozen generator) and then fine-tunes the generator (with
a frozen transformation). Differently, our approach trains
the adaptor once with the generator frozen all the time.
2) Discriminator is frozen in our method but fine-tuned
in MineGAN, which might lead to overfitting, especially
under the one-shot setting. The first two columns of
Tab. A1 present the one-shot comparison result where
GenDA surpasses MineGAN in all three categories.
Differences from FreezeD. 1) In terms of the discriminator,
FreezeD (FD) always keeps the lower-level features un-



touched and fine-tunes the mid/high-level features. Tab. A1
suggest that freezing all parameters (“FD-all”) except the
last layer would lead to a performance drop. 2) More impor-
tantly, our attribute classifier is randomly initialized which
drops out the knowledge of original domain and pours
more attention on the new domains. Tab. A3 demonstrates
the superiority of our attribute classifier over directly fine-
tuning the original last layer of discriminator. 3) Different
from FreezeD, our GenDA also freezes generator and
equips it with an attribute adaptor and diversity-truncation
strategy, achieving appealing performances. In particular,
the diversity-truncation strategy could also help the original
FreezeD slightly, shown in the “FD-trunc.” column of the
above table.

C. Implementation Details

Implementation. We choose the state-of-the-art Style-
GAN2 [4] as our base GAN model, following [10]. Style-
GAN2 proposes a more disentangled W space in addition
to the native latent space Z . Here, our attribute adaptor
is deployed on the W space. z̄ becomes wavg , which is
a statistical average in the training of the source generator.
To alleviate the overfitting problem, we apply differentiable
augmentation on both the reference image and the adapted
synthesis [17, 2]. In particular, we adopt the augmentation
pipeline from StyleGAN2-ADA [2] and linearly increase
the augmentation strength from 0 to 0.6. We use Adam
optimizer [5] for training and the learning rates are set as
1.25e−4 and 2.5e−4 for A(·) and ϕ(·), respectively. All
experiments are stopped when the discriminator has seen
200K real samples. The last “ToRGB” layer (with 1 × 1
convolution kernels) of the generator is tuned together with
the adaptor A(·) to make sure aligning the synthesis color
space to the reference image. The hyper-parameter β in
Eq. (5) is set as 0.7.
Datasets. Our source models are pre-trained on large-
scale datasets (e.g., FFHQ [3] and LSUN Church [16]) with
resolution 256×256. We collect target images from FFHQ-
babies, FFHQ-sunglasses, face sketches ([10]), and samples
from masterpieces (i.e., Mona Lisa and Van Gogh’s houses)
and Artistic-Faces dataset.
Evaluation Metrics. Fréchet Inception Distance (FID) [1]
serves as the main metric. Akin to [10], we always
calculate the FID between 5,000 generated images and all
the validation sets. Additionally, we report the precision
and recall metric [6] to measure the quality and diversity
respectively.

D. Ablation Study

Component Ablation. In order to further investigate the
role of each proposed component (i.e., attribute adaptor,
attribute classifier, and truncation strategy), we conduct

Table A5: Ablation study on the components proposed
in GenDA under one-shot, including the attribute adap-
tor (AA), the attribute classifier (AC), and the diversity-
constraint strategy (DC). Evaluation metrics include FID
(lower is better), precision (higher means better quality),
and recall (higher means higher diversity).

AA AC DC. FID↓ Prec.↑ Recall↑
147.91 0.61 0.012

✓ 92.54 0.53 0.162
✓ ✓ 86.21 0.63 0.176
✓ ✓ ✓ 80.16 0.74 0.033

Table A6: Ablation study on the components proposed
in GenDA under 10-shot, including the attribute adap-
tor (AA), the attribute classifier (AC), and the diversity-
constraint strategy (DC). Evaluation metrics include FID
(lower is better), precision (higher means better quality),
and recall (higher means higher diversity).

AA AC DC. FID↓ Prec.↑ Recall↑
109.87 0.80 0.000

✓ 53.59 0.57 0.064
✓ ✓ 50.37 0.62 0.106
✓ ✓ ✓ 47.05 0.71 0.065

comprehensive ablation studies on 1-shot and 10-shot adap-
tation. In particular, we choose FreezeD [8] as our baseline
which freezes the lower features of the discriminator while
fine-tunes the rest of the discriminator and the entire gener-
ator. Moreover, we also apply adaptive discriminator aug-
mentation strategy (ADA) on it since data augmentations
usually help alleviate the overfitting problem.

As is shown in Tab. A5 and Tab. A6, the baseline
alternative could achieve the satisfying synthesis quality
but worse diversity, suggesting that it might overfit the
training shot significantly. By involving the attribute adap-
tor, the baseline is substantially improved, which already
outperforms prior approaches. Meanwhile, the boosted
diversity also demonstrates our motivation that we could
reuse the variation factors of the source model and hence
maintain the synthesis diversity to some extent. However,
the quality (i.e., precision) on babies and sketches becomes
worse. After being equipped with the attribute classifier,
the overall measurement is further enhanced. Together with
the diversity-constraint strategy, our GenDA could facilitate
the quality to the baseline level but achieve better diversity,
leading to the new state-of-the-art few-shot adaptation
performances.
Architectural Ablation. To further study the effect of
the lightweight design of the attribute adaptor and the
attribute classifier, we conduct experiments of replacing the
lightweight module with a two-layer multilayer perceptron
(MLP), which has a higher learning capacity. Tab. A2
presents the results. Obviously, with either a heavier

https://faculty.idc.ac.il/arik/site/foa/artistic-faces-dataset.asp


Figure A1: Analysis on the transformation vector for
domain adaptation, which is noted as a in Eq. (3). We
launch 15 one-shot adaptation experiments with 5 kids, 5
sunglasses, and 5 sketches as the target, respectively. After
the model converges, we collect the transformation vector
learned by the attribute adaptor, and then perform PCA on
all 15 vectors. We can tell that our GenDA tends to learn
similar transformation regarding the reference with similar
characters. The 15 training samples are visualized together
with the PCA results.

attribute adaptor or a heavier attribute classifier, the syn-
thesis performance drops significantly. This might be
caused by the overfitting problem since we only have one
training image under our one-shot setting. It verifies the
effectiveness and necessity of our lightweight design for the
challenging one-shot generative domain adaptation task.
Hyper-parameter Ablation. We also conduct the ablation
of diversity constraint parameter β in Eq. (5). Specifically,
we train our model with 10-shot sunglasses images and
maintain the evaluation metrics used in Sec.3.2. As is
shown in Tab. A4, when increasing the value of β, the
synthesis quality becomes worse while the diversity is en-
hanced. Noticeably, when the β is less than 0.5, the training
diverges. Therefore, we choose 0.7 in all experiments for
its overall performance.

E. 10-shot Domain Adaptation
As our GenDA could capture the representative attributes

precisely with an increasing number of target shots, we also

Table A7: Quantitative comparison on 10-shot adapta-
tion. FID (lower is better) serves as the evaluation metric

10-shot transfer Babies Sunglasses Sketches

TGAN [14] 104.79 55.61 53.41
TGAN+ADA [2] 102.58 53.64 66.99
BSA [9] 140.34 76.12 69.32
FreezeD [8] 110.92 51.29 46.54
MineGAN [13] 98.23 68.91 64.34
EWC [7] 87.41 59.73 71.25
Cross-Domain [10] 74.39 42.13 45.67

GenDA (ours) 47.05 22.62 31.97

compare again prior approaches under the general few-shot
adaptation setting. Following the setting of [10], we choose
10-shot target domain for comparison.
Quantitative Comparison. Multiple baselines are intro-
duced to conduct the quantitative comparisons, including
Transferring GANs (TGAN) [14], Batch Statistics Adapta-
tion (BSA) [9], FreezeD [8], MineGAN [13], EWC [7] and
Cross-Domain [10]. All these methods adapt a pre-trained
source model to a target domain (e.g., babies, sunglasses
and sketches). Akin to Cross-domain [10], FID serves as
the metric for evaluation.

Tab. A7 presents the 10-shot quantitative comparison on
several target domains. Although Cross-Domain [10] has
already obtained the competitive results, our method could
still significantly improve the performance by a clear mar-
gin, resulting in the new state-of-the-art synthesis quality
on few-shot adaptation. Specifically, for domains that differ
in semantic attributes (i.e., babies and sunglasses), huge
gains are obtained by GenDA. It is also worth noting that
when the domain gap increases (i.e., from realistic facial
images to sketches), the performances of Cross-domain [10]
and FreezeD [8] become almost identical (45.67 v.s 46.54)
while substantial improvements of synthesis could remain
observed by our method (31.97). It demonstrates the effec-
tiveness of our method on the general few-shot settings.

F. Properties of Adapted Latent Spaces

In order to leverage the generative models for content
editing, prior work [11, 15] proposed to find the semantic
directions in the latent spaces of a well-trained generative
model. Such that, we could adjust a certain attribute of
the synthesis by moving its corresponding latent code in
one of these semantic directions. As our motivation is
to reuse the knowledge of source models, we therefore
investigate whether the latent space after adaptation remains
to maintain the same semantic directions.

We start with latent space interpolation which can reflect
whether the generative model overfits the training samples.
In particular, all models are fine-tuned with one shot image.
Fig. A4 presents the generated results during interpolation
between two latent codes. The changes are smooth and
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Figure A2: Visualization of adapted latent spaces after domain adaptation. Each cluster corresponds to a particular
training set. Left: The latent spaces learned with different reference images are clearly separable. Right: When we use two
reference images, which have common attributes, as a combined training set, the transformed representations tend to locate
at the overlapped region between the representations learned from each reference image independently.
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Figure A3: Latent representation comparison before and after adaptation. The latent space is clearly pushed from the
red cluster to the blue cluster when there exists an obvious gap between the source and the target domains.
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Figure A4: Properties of adapted latent spaces. Note that, all models (except the source model) are trained with one shot
image. Top: during the interpolation between two latent codes (corresponding to left and right most images), the resulting
images change smoothly and within target domain. Bottom: GenDA preserves the semantic directions of source generative
models which are applicable on models after adaptation

within target domains (from top to bottom: sunglasses,
babies, and sketches), indicating the attributes are well-
captured by our adaptation.

Then, we investigate the semantic properties of the

adapted generative models. We first present the effective-
ness of semantic controlling via InterFaceGAN [11] on
the source model. As shown in the middle of Fig. A4,
the semantic direction of smiling control works well. If



we directly apply this direction on three different target
models, they all reveal the same semantic changes while
remaining other attributes (shown in the bottom of Fig. A4).
We accredit the preservation of semantic direction to the
design of inheriting knowledge from source domain and
the lightweight modules of GenDA. Such a property can
be of great benefit to content manipulation on various target
domains, with the semantic discovery performed on source
domain for only once.

G. Analysis

Transformation Vector. We also visualize the learned
attributes via Principal components analysis (PCA). Con-
cretely, we first choose 15 shots from 3 domains (i.e., ba-
bies, sunglasses and sketches). The corresponding models
are trained on them and 15 attribute vectors in Eq. (3) are
collected to perform PCA. Fig. A1 presents the PCA results.
Obviously, the attribute vectors of different shots but the
same domain assemble closely, while there are obvious
decision boundaries across domains. Such interpretation
happens to match our motivation that the attribute adaptor
could capture the representative attributes and make the
corresponding adjustment for a source model to multiple
target domains.
Transformed Latent Representation. We also visualize
how the latent representations change before and after
adaptation, with the help of PCA. Specifically, we sample
2K latent codes from the latent space after adaptation for
each model used in Fig.4 and Fig.5. Fig. A2 suggests
that the distributions after adapting the source model to
three different target domains are clearly separable. Also,
when using more than one reference image, which have
common attributes, from the target domain, the transformed
representations tend to locate at the overlapped region
between the representations learned from each reference
image independently. Our supplementary material also
presents the latent representation change after cross-domain
adaptation, where the latent distribution of the source
domain is successfully shifted to the target one.

We also visualize the latent representation change for
cross-domain adaptation. Fig. A3 shows the latent rep-
resentation change after cross-domain adaptation, where
the latent distribution of the source domain is successfully
shifted to the target one.

H. Additional Results

Comparison with the style transfer task. As discussed
in Sec.3.3, the proposed approach might be an alternative
for style transfer. Here, we qualitatively compare our
approach with the state-of-the-art method, SWAG [12]
regarding the style transfer task. The comparison results
are included in Fig. A5. From the perspective of the color

transfer, SWAG [12] does better since it could successfully
transfer the representative color from the target image to the
synthesis. For example, the green of the vegetation and the
pink of the skin appear in the transferred samples. However,
it also reveals its weakness that the transfer is inconsistent.
Specifically, the wall or the sky in church synthesis is in
pink while our method pictures them in the same color. This
implies that the style-transfer-based methods could have no
semantic concepts regarding the content, leading to such
inconsistency and obvious artifacts. Therefore, it naturally
cannot transfer higher-level attributes like sunglasses while
ours could.

References
[1] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash
equilibrium. In Adv. Neural Inform. Process. Syst., 2017.
2

[2] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Adv. Neural Inform.
Process. Syst., 2020. 2, 3

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conf. Comput. Vis. Pattern Recog., 2019. 2

[4] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 2

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[6] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall
metric for assessing generative models. arXiv preprint
arXiv:1904.06991, 2019. 2

[7] Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman.
Few-shot image generation with elastic weight consolida-
tion. In Adv. Neural Inform. Process. Syst., 2020. 3

[8] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the
discriminator: a simple baseline for fine-tuning gans. arXiv
preprint arXiv:2002.10964, 2020. 1, 2, 3

[9] Atsuhiro Noguchi and Tatsuya Harada. Image generation
from small datasets via batch statistics adaptation. In Int.
Conf. Comput. Vis., 2019. 3

[10] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-shot
image generation via cross-domain correspondence. In IEEE
Conf. Comput. Vis. Pattern Recog., 2021. 2, 3

[11] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. In-
terfacegan: Interpreting the disentangled face representation
learned by gans. IEEE Trans. Pattern Anal. Mach. Intell.,
2020. 3, 5

[12] Pei Wang, Yijun Li, and Nuno Vasconcelos. Rethinking
and improving the robustness of image style transfer. In



Source domain: FFHQ Face

Target Adaptation By Ours

Style Transfer by SWAG

Source domain: LSUN Church

Adaptation By Ours

Style Transfer by SWAG

Target

Figure A5: Comparison with the style transfer task. GenDA could transfer the characteristic of the target image to the
source model in a more harmonious way, while SWAG [12] transfers the color inconsistently, leading to obvious artifacts.

Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 124–133, 2021. 6,
7

[13] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis
Herranz, Fahad Shahbaz Khan, and Joost van de Weijer.
Minegan: effective knowledge transfer from gans to target
domains with few images. In IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 1, 3

[14] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de

Weijer, Abel Gonzalez-Garcia, and Bogdan Raducanu.
Transferring gans: generating images from limited data. In
Eur. Conf. Comput. Vis., 2018. 3

[15] Ceyuan Yang, Yujun Shen, and Bolei Zhou. Semantic
hierarchy emerges in deep generative representations for
scene synthesis. Int. J. Comput. Vis., 2021. 3

[16] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans



in the loop. arXiv preprint arXiv:1506.03365, 2015. 2
[17] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song

Han. Differentiable augmentation for data-efficient gan
training. In Adv. Neural Inform. Process. Syst., 2020. 2


