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A. Dynamic Scene Reconstruction
As mentioned in the submission, we collected a RGBD-

pet dataset containing videos of a cat and a dog, captured
by an iPad with RGBD sensor. We use the RGB stream for
reconstruction. To evaluate the dynamic scene reconstruc-
tion accuracy, although one would want to use the complete
scene geometry as ground-truth, it is difficult to obtain for
in-the-wild dynamic scenes. Instead, we render the depth
and evaluate against the depth from LiDAR sensors as a
proxy.
Depth Metrics. Following Eigen et al. [2], we compute the
root mean squared error (RMSE) for both rendered depth
and disparity (inverse depth) maps. To find the unknown
global scale factor, we align the median value of the ren-
dered depth with the ground truth similar to Luo et al. [6]:

si = median
x

{
Dpred

i (x)/Dground−truth
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}
. (1)

Table 1: Comparison of scene reconstruction on RGBD-pet. We
report root-mean-square-error (RMSE, ↓) on rendered depth and
disparity (inverse depth) maps, averaged over all frames. DPT-
omnidata [1, 8] trains transformer-based depth predictors on a mix
of multiple depth datasets. BANMo∗ [11] applies differentiable
rendering to reconstruct deformable objects, and we follow Neu-
Man [4] to fit the object scale to a ground plane. PPR out-performs
DPT-omnidata on the cat sequence, and out-performs BANMo∗ on
both sequences.

Method
cat dog

depth disparity depth disparity

DPT-omnidata 0.620 0.201 0.165 0.027
BANMo∗ 0.181 0.149 0.232 0.061
PPR 0.179 0.139 0.216 0.041

Results. The results are shown in Tab. 1. We first inter-
pret the results of DPT-omnidata. Leveraging depth priors
learned from large-scale training data, DPT-omnidata per-
forms very well for the dog sequence. However, it fails
to produce accurate depth estimates for the cat sequence,

Reference Ground-truthDPT-omnidata BANMo* PPR

Figure 1: Comparison of scene reconstruction on RGBD-pet.
Pixels with ground-truth depth greater than 10 meters are not cap-
tured by the depth sensor, and therefore removed from evaluation
(marked as black). BANMo∗: BANMo with ground plane fitting.

possibly due to the uncommon top-down view angle of
the video. PPR produces much better results on the cat
sequence because it relies on multivew constraints that is
more robust than depth priors. BANMo with ground fitting
computes a rough relative scale between the object and the
scene. As a result, the object still appears floating in many
frames, producing less accurate depth estimations. In con-
trast, PPR couples differentiable physics optimization with
differentiable rendering to jointly solve for the object scale
and its global movements, which successfully reduces er-
rors on the dynamic scene reconstruction task.

B. Additional Implementation Details
Regularization Terms. During differentiable rendering op-
timization, we apply shape and motion regularization terms
as follows. We use 3D cycle loss to encourage the forward
and backward warping fields W to be consistent with each
other [5, 11]. We additionally apply an eikonal loss [3, 12]
to both scene and object fields, which enforces the recon-
structed signed distances to represent a surface:

Leikonal = (∥∇XMLPSDF(X)∥ − 1)2, (2)

where we force the first order gradient of predicted SDF
to have unit norm. Eikonal regularization helps produce
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Figure 2: Optimization of Rag Doll Model. We start with a gen-
eral rest shape (a unit sphere), and a known skeleton topology of
the rag doll model. During optimization, both the shape and the
rag doll model (joint locations and generalized mass of each link)
are specialized to fit the input videos.

well-defined mesh when running marching cubes on the
implicitly-defined surface.
Rag Doll Optimization. To optimize the object fields, we
start with a general rest shape (a unit sphere) and a known
skeleton topology of the rag doll model. During optimiza-
tion, both the shape and the rag doll model (joint locations
and generalized mass of each link) are specialized to fit the
input videos. Please see Fig. 2 for the visualization of rest
shapes and rag doll models.
Contact Plane Fitting. We assume the potential contact
bones of a skeleton (the “feet”) are known, and the contact
locations are visible. The algorithm is as follows:

Input: Scene points P ∈ RN×3, scene-to-camera transforms Gs→c ∈
RT×4×4 over T frames, camera intrinsics K ∈ R3×3, and ob-
ject “feet” trajectories in the camera space J ∈ RT×B×3.

‘Output: Contact plane parameters A = (n, d).
Parameters: Number of plane hypotheses K = 5, threshold T1 = 0.01.

Step 1: Fit Multiple Planes
For k in 1:K

Fit a plane Ak to P using RANSAC with threshold T1.
Set inlier points of Ak as Pk , and remove those from P.

Step 2: Find the Plane in Contact
Project scene points to images: p = KGs→cP ∈ RT×N×2.
Project “feet” points to images: q = KJc ∈ RT×B×2.
For k in 1:K

Score Ak by “feet”-to-Pk distance over frames and “feet”:
d=

∑T
t=1

∑B
j=1 min(||pk

t − qj
t ||).

Return Ak with the lowest total “feet”-to-Pk distance.

Under those assumptions, the contact plane does not have
to occupy the majority of the background, and cameras do
not have to point forward. Our algorithm works for the
videos we tested on (included in the supplementary page),
but breaks: (1) when the contact points are hard to define
(e.g., cat lying sideways), or (2) when the object makes con-
tact with multiple planes in a video.
Gradient Clipping. We find that differentiable physics in-
troduces unstable gradients to the optimization, causing a
high final reconstruction loss. Therefore, we clip outlier

gradients to an empirical value c = 0.1:

∇ϕLDP =

{
∇ϕLDP if ∥∇ϕLDP∥ ≤ c

c

∥∇ϕLDP∥∇ϕLDP if ∥∇ϕLDP∥ > c
(3)

where LDP is the differentiable physics loss in Eq. (11) and
ϕ is the physics parameters.

C. Additional Results
Comparison with animal body models. Creating accu-
rate body models for animals is difficult due to lack of
3D data containing diverse animal shape, appearance, and
pose. In the following, we show a visual comparison with
BARC [10], a state-of-the-art dog body model in Fig. 3. The
video comparison can be found on the supplement website.

Figure 3: Comparison with BARC. BARC fails to reconstruct the
sharp ears of the dog, and puts the legs into the wrong positions,
while PPR faithfully reconstructs them.

Roll-out Performance. In Fig. 4, we show qualitative re-
sults of simulating the physical system (rag doll model) for
various time windows. Within the time window T in train-
ing, the simulation is almost always stable. When simulat-
ing a time window greater than T , the controller might fail
to track the motion.

We posit that it is because the error in the states of the rag
doll model accumulates over time [9]. The PD controller is
not able to generalize to never-before scenarios. One po-
tential direction to improve this is to ask the controller to
reason about future time horizons (instead of the direct next
step) [7].

t=1s t=10s t=13s
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Figure 4: Simulation over long time window. We perform physics
optimization with a window size of 2.4s. The controller keeps
track of the target for 10s, and diverged at around 13s. Red: simu-
lated character. Gray: reference character.
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