
A. Datasets

In this section, we provide more details on the datasets
utilized for evaluation. CIFAR10 [7] contains a total of 60k
colorful images in 10 categories. We randomly sample 5k
images as the query set and extract 1k samples from each
class as the training set, while the rest images are adopted
as a retrieval set. CUB200-2011 [10] is the most common
dataset utilized for fine-grained image classification tasks
and contains 11,788 examples of 200 subcategories con-
nected with bird species. Following [8], we use the first
100 species for training, while the remaining 100 species
are used for testing. CARS196 [6] contains 16,185 exam-
ples of 196 different categories of car models. Following the
same setting in [8], we utilize the first 98 species of the car
models for training and the rest for testing. Flickr25k [3]
contains more coarsely grained categories and is more gen-
eralized. It contains 25,000 images with some of the 24
labels. We randomly select 50% of the images for training.
The remaining images are utilized for testing, i.e., 10% for
a query set. Cars98N [8] is a real-world noise label bench-
mark which leverages Pinterest’s search engine to obtain a
collection of 9,558 examples by utilizing the 98 labels from
the CARS196 training dataset as queries.

B. Baselines

We discuss the baseline methods for comparison in de-
tails in this section.

• Fast-AP [2] & Smooth-AP [1]. These two methods
are effective variants of the AP-based retrieval approach.
Fast-AP optimizes the Average Precision metric based on
the interpretation of AP as the area under precision-recall
curve while Smooth-AP replaces the indicator function in
the AP expression with a sigmoid function to smooth the
ranking procedure.

• Proxy-Anchor loss [5] is a metric learning loss based on
proxies that facilitates rapid and dependable convergence
akin to other proxy-based losses. Simultaneously, it cap-
italizes on the extensive data-to-data relationships during
training, resembling the advantages of pair-based losses.
In detail, it treats each proxy as an anchor and establishes
connections with all data points within the batch. This al-
lows for interactions between samples through the proxy
anchor throughout the training process.

• REL [11] is a robust early-learning method which can de-
crease the influence of noisy samples before early stop-
ping when training a neural network. It divides all the
parameters into the critical and non-critical ones and then
performs different rules to update these two kinds of pa-
rameters.

• HEART [9] is a noise-resistant hash retrieval method
which measures distances between images characterized
by their multiple augmented views to choose clean pairs
and samples with high confidence. Since HEART is pro-
posed for hash retrieval, we discard the hash layer of the
model to fit it into a dense retrieval problem.

• Jo-SRC [12] uses JS divergence to measure differences
between the given ground truth label distribution and the
predicted probability distribution to refine clean samples
and leverages contrastive learning techniques to detect
OOD/ID samples, then it reassigns labels for OOD/ID
noisy samples through a mean-teacher model.

• T-SINT [4] is proposed specifically for image retrieval
with label noise. It considers all the negative pairs of the
samples in a mini-batch to be clean and uses a teacher-
based training strategy to recognize false positive pairs
and eliminate these false positive pairs from the aggrega-
tion process during optimization.

• PRISM [8] is a noise-resistant training technique which
stores clean features in a memorybank and uses the av-
erage similarity of these stored clean features instead of
features extracted by the neural network to identify noisy
samples.

C. Visulaization Analysis
Challenging Case Study. To compare the retrieval per-
formance of our TITAN and PRISM on a more challeng-
ing retrieval benchmark, we return the top-10 results of the
query on the more fine-grained CUB dataset, and the re-
sults are shown in Figure 1, we can see that the retrieval
accuracy on CUB is a bit lower than the retrieval accuracy
on coarse-grained benchmarks (e.g., FLICKR25K), and
our method still achieves better performance than PRISM,
which demonstrates the robustness of our model.
Addtional Qualitative Results. In this part, we plot the
Precision-Recall curve and Top-N precision curve of dif-
ferent methods implemented on FLICKR25K to make the
qualitative analysis experiments more complete. As shown
in Figure 2, our TITAN still achieves the best perfor-
mance when compared on a larger and more coarse-grained
dataset, which demonstrates the generalization and superi-
ority of our method.

D. Supplemental Ablation Analysis
To further explore the effectiveness of more detailed

modules in our TITAN, we supplement the additional ab-
lation experimental results with two model variants as fol-
lows: (1) TITAN w/o V removes the variance of the Gaus-
sian distribution corresponding to the prototype when sam-
pling a feature to Mixing, which means we only use the
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Figure 1. Example of the Top10 returned images with 512-dimensional feature on CUB.

Figure 2. The Precision-Recall curves are plotted in the first col-
umn while the Top-N precision curves are in the second column.

Table 1. Addtional ablation results on CIFAR10, CUB, CARS, and
FLICKR25K with noise rate being 0.1.

Method CIFAR10 CUB200 CARS196 FLICKR25K

TITAN w/o V 88.67 18.90 17.17 94.30
TITAN w A 88.01 18.43 16.44 92.34
TITAN(full) 89.01 19.11 17.64 94.33

mean vector of the Gaussian distribution. (2) TITAN w A
replaces sampled virtual feature with randomly augmented
feature. The experiment results are shown in Tabel 1, from
these results, we can draw some conclusions as follows:

• When the number of training samples is large enough,
using a Gaussian distribution to represent the prototype is
reasonable. Experimental results show that the MAP@R
value decreases slightly when the variance of the Gaus-
sian distribution is removed in the Mixing operation, and
the optimization method degenerates to a form closer to
the Proxy-based approaches when only the mean vector is
used, which implicitly indicates that our method is more
robust than the Proxy-based methods.

• When replaces sampled virtual feature with randomly
augmented feature, the MAP@R values have a significant
decrease, which indicates that our proposed Prototypical
Mixing strategy is effective and can alleviate the memory
of noisy data to a certain extent.
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