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Appendix
• In section 1, we first describe the implementation de-

tails for each of the teacher model and the student
model.

• In section 2, we compare State-of-the-Art method in
MuPoTs [1].

• In section 3, we provide the qualitative analysis of the
proposed method, with the comparison between the
baseline method.

• In section 4, we describe the adaptive dilation depend-
ing on the size of the object, with how diverse the size
of the object is.

• In section 5, we explain the SMPL edge estimator
(SEE) and SMPL edge estimator self-supervised de-
occlusion(SESD). Model parameters and MACs are
also compared in this section.

• In section 6, we explain why we used Canny edge de-
tector as the simple edge detector based on the differ-
ence between Canny edge [2] and HED [3].

1. Implementation Details
Teacher model. Following the 3DCrowdNet [4], which is
chosen as our baseline, the ResNet [5] architecture is used
as the encoder, and the ImageNet pretrained weights in [6]
are imported for training. The Adam optimizer [7] was
used, and training is performed for 22 epochs with a mini-
batch size of 64 using a learning rate of 10−4. The learning
rate decay of 0.1 was applied at the 14th and 20th epoch. In

3DPCKMethod All↑ Matched↑ Prior information

SMPLify-X [9] 62.8 68.0 OpenPose [8]
HMR [10] 65.6 68.6 Mask R-CNN [11]
HMR [10] 66.0 70.9 OpenPose [8]
Jiang [12] 69.1 72.2

3DCrowdNet [4] 70.2 70.9 OpenPose [8]
3DCrowdNet [4] 72.7 73.3 HigherHRNet [13]

SEFD (Ours) 72.7 72.7 OpenPose [8]
SEFD (Ours) 73.8 73.8 HigherHRNet [13]

Table 1. Comparison on the MuPoTs [1] test dataset between
SEFD and previous methods. The numbers denote 3DPCK for
all annotations (All) and annotations matched to a prediction
(Matched).

addition, training was performed by feeding the concatena-
tion of the SMPL edge map and the RGB image as an input.
In the case of the structural map, it was trained for a total of
10 epochs, and the learning rate was reduced by 1/10 at the
6th and 8th epoch. Additionally, we used various types of
structural maps as an input.
Student model. The student model used the same optimizer
and learning rate as the teacher model. We trained for a
total of 14 epochs and reduced the learning rate to 1/10 at
the 10th epoch. As an input, a structural map with Canny
edge [2] with 5 × 5 dilation, Idilated edge, which had the
best performance, was used. For both teacher and student
models, 2D pose estimator [8] was used in the test phase.

As a result of our experiments, Canny edge [2] with 5×5
dilation and HED [3] show the highest accuracy in edge
detection. Therefore, with these two edge detection results,
we visually compare them to create an SMPL edge.

2. Evaluation of MuPoTs [1]
Unlike the training set, MuPoTs [1] filmed in an out-

door environment. Therefore, since the domain gap exists,
I compared it with Baseline and other methods. Prior infor-
mation in Table 1 means the 2D pose estimator [8, 13] or
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Figure 1. Difference between adaptive dilation and fixed 5 × 5
dilation kernel; red box shows the results of adaptive dilation and
blue box shows the result of fixed 5× 5 dilation kernel.

segmentation [11] used for performance evaluation, which
is used externally.

3. Visualization on Comparing Proposed
Method and Baseline

Fig. 7 shows the results of the 3DPW [14] and the
3DPW-OC benchmark. Figs. 8, 9, and 10 are the results
of CrowdPose testset. Fig. 7 shows that SEFD has the bet-
ter quantitative performance than baseline in all conditions,
such as a situation in which a part of the body is occluded
due to another object, sitting situation, and occlusion situ-
ation between people. Fig. 8 shows the occlusion in the
crowded scene and Fig. 9 shows the complex pose case in
the crowded scene. In Fig. 10, both the occlusion and com-
plex pose in the crowded scene are shown. In these cases,
SEFD shows the better quantitative result than baseline.

4. Adaptive Dilation

As shown in Fig. 1, if a dilation size is used without ap-
plying adaptive dilation, the boundary information for small
objects cannot be properly obtained. Therefore, it is impor-
tant to make dilation changeable according to the size of the
object.

Fig. 2 is a histogram of the ground-truth person bound-
ing box of MPII [15], MSCOCO [16], MuCo [1], and Hu-
man3.6M [17] benchmark datasets used for training the
SEFD. The reason for visualizing the ground-truth person
bounding box is to check how diverse the size of the object.
Since various distribution exist for the bounding box sizes,
using only one dilation kernel will cause the boundary in-
formation of the small objects to disappear, so various sized
dilation kernels should be used.

Figure 2. Histogram of bounding box size on MPII [15],
MSCOCO [16], MuCo [1], and Human3.6M [17] benchmark
dataset. The reason for visualizing the ground-truth person bound-
ing box is to check how diverse the size of the object. The x-axis
means the size of the person bounding box, and the y-axis means
the number of bounding box sizes.

Baseline SEFD SEE SESD
Parameters 30.2M 30.2M 61.2M 92.2M

MACs 56.4G 56.4G 111.1G 156.8G

Table 2. Comparison of the model parameters and MACs between
the baseline, SEFD, SEE, and SESD.

5. SMPL Edge Estimator

We confirmed that the performance improved when the
SMPL overlapping edge Ioverlap edge is used. However,
this SMPL overlapping edge could not be applied in the real
environment as it was created using ground-truth. There-
fore, we devised several approaches to use the Ioverlap edge.
This section explains the details of the SMPL edge estima-
tor approach to estimate the SMPL edge, prior to the pro-
posed (SEFD) approach.

To directly estimate the SMPL edge, a simple UNet [?]
structure is utilized. To better predict the SMPL edge map,
various combinations of loss are tested between the SMPL
edge map and ground-truth edge. L1 loss is used to con-
sider the general spatial area, and SSIM loss and VGG16
loss are adopted to follow the texture components and the
perceptual similarity. L1 × 0.2 + LV GG16 × 0.8 shows the
best results. Furthermore, we create an occlusion-resistant
SMPL edge estimator self-supervised de-occlusion (SESD)
using the idea of [18]. However, as shown in Fig. 3, the oc-
clusion and complex pose are not properly estimated. Also,
after checking model parameters and Multiply-ACcumulate
(MACs), it is confirmed that both model parameters and
MACs show poor results compared to baseline and SEFD,
which is shown in Table 2. Therefore, we use the SEFD
model.



Figure 3. Results for the SMPL edge estimator in various complex
pose and occlusion: (a) basic UNet structure SMPL Edge Esti-
mator (SEE) and (b) SMPL edge Estimator Self-supervised De-
occlusion SESD.

Figure 4. Comparative visualization of Canny Edge showing hu-
man internal information and HED where human internal informa-
tion disappears. (a) Input image, (b) SMPL map, (c) Canny edge
[2], and (d) HED [3].

6. Canny [2] vs HED [3]

For simple edge detection, we used Canny edge detec-
tion [2]. The reason Canny edge detector [2] was used is
because the results of Canny edge with 5×5 dilation showed
the better result than using HED [3]. Fig. 4 also shows why
the Canny edge [2] is selected. Canny edge [2] exhibits hu-
man internal boundary information, while HED [3] cannot,
and the internal boundary information is almost lost. There-
fore, we chose the Canny edge detection [2] with 5 × 5 di-
lation as simple edge detection.

7. Problems with SMPL Edge Generation

This section explains the problems in generating SMPL
edge maps for SEFD and how to solve them. In the case
of the MPII [15] and MSCOCO [16] datasets, it is caused

Figure 5. Illustration showing how the 3D mesh is projected onto
the image plane according to the local length and principal point.

by using the pseudo ground truth. For the Human3.6M
dataset [17], the multi-view viewpoint becomes a problem,
as the SMPL parameter needs to be changed appropriately
for each camera extrinsic parameter.

7.1. Problem with MPII [15] and MSCOCO [16]
datasets

Fig. 5 shows how the focal length and the principal point
are projected to a human mesh on an image plane. For the
MPII [15] and MSCOCO [16] datasets, the focal length and
principal point of the people present in an image are dif-
ferent. Therefore, the human mesh is projected to a differ-
ent image plane depending on the focal length and principal
point. Thus, if the coordinates of the mesh are not changed
using the focal length and principal point, an inappropriate
result will occur. Hence, the following transition must be
carried out for generating the correct mesh:

uv
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(1)

where (u, v) indicates the coordinate of the image plane,
fx, fy denotes the focal length, cx, cy denotes the principal
point, ri,j denotes the camera rotation, and ti denotes the
camera translation matrix. We will project the mesh of all
the people in one image plane. Therefore, ri,j and ti should
have constant values in one image.

In general, the coordinate of the mesh is defined as (x,
y, z). In the case when two people exist in an image, z1 for
the first person can be calculated with focal length for each
person, f1 and f2.



z2 =
f2

f1
∗ z1. (2)

As in Fig. 5, z should be changed according to the focal
length. Followingly, Eq. (2) is derived. The image projec-
tion for each person, (ui,vi) can be derived using the fol-
lowing equations.

u1 =
f1
x

z1
∗ x1 + c1x,

u2 =
f2
x

z2
∗ x2 + c2x,

v1 =
f1
y

z1
∗ y1 + c1y,

v2 =
f2
y

z2
∗ y2 + c2y.

(3)

When the second person is projected onto the image plane
of the first person, the following equation can be derived:

u =
f1
x

z2
∗ (x2 +

z2

f1
x

(c2x − c1x)) + c1x,

v =
f1
y

z2
∗ (y2 + z2

f1
y

(c2y − c1y)) + c1y.

(4)

Following Eq. (4), the image projection to a single image
plane is possible.

7.2. Problem with Human3.6M [17] dataset

In the case of the multi-view images, the camera extrin-
sic parameter varies according to each camera view. There-
fore, it is necessary to change the SMPL parameter to match
the camera extrinsic parameter. The camera extrinsic pa-
rameters

−→
R ∈ R3×3 and

−→
t ∈ R3×1, the SMPL translation

parameter
−−−−→
tSMPL ∈ R3×1, SMPL 3D poses

−→
θ ∈ R23×3,

and root pose
−−→
θroot ∈ R3×1 are included in the SMPL pa-

rameter. First of all, to fit
−−−−→
tSMPL to the camera extrinsic pa-

rameter, the calculated SMPL transition parameter
−−−−→
tSMPL

∗

must be set according to the following equation:

tSMPL1
∗

tSMPL2
∗

tSMPL3∗

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

tSMPL1

tSMPL2

tSMPL3

+
1

1000
×

t1t2
t3

 ,

(5)

The reason for multiplying 1/1000 is to change from mm
to m. To change

−−→
θroot, the following equation must be per-

formed:

−−−→
θroot∗ = rod(

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (rod(
−−→
θroot))), (6)

Figure 6. Visualization rendering problems and solutions in Hu-
man3.6M [17] datset. The rendering problem is solved by using
camera extrinsic parameter to adjust the SMPL translation param-
eter

−−−−→
tSMPL and root pose

−−→
θroot. (a) an input image, (b) The SMPL

edge with the rendering problem, and (c) the SMPL edge with the
rendering problem solved.

In the above equation, rod(coordinate) represents the Ro-
drigues’ rotation formula, which is a method of deriving the
rotation angle as a result. Through the above process, the
problem of the camera extrinsic parameter is solved, and
the results are shown in Fig. 6. Fig. 6 (b) shows the result
when the rendering problem is not solved, and Fig. 6 (c)
shows the result when the rendering problem is solved by
using extrinsic camera parameters by adjusting the SMPL
translation parameter

−−−−→
tSMPL and root pose

−−→
θroot.



Figure 7. Performance comparison between the proposed and baseline method on the 3DPW test dataset and the 3DPW-OC dataset. The
2D pose could not be found properly, so the occlusion and complex pose could not be estimated properly.



Figure 8. Performance comparison between the proposed and baseline method on the CrowdPose testset. All rows correspond to the
occluded cases. Specifically, rows 1, 2, and 4 show results in a low-light condition or blurry environment. Unlike the baseline method,
which shows poor performance, the proposed method shows considerable performance robust to these harsh conditions. As in rows 5
and 7, even when more than half of the body part is occluded, the performance tendency between the baseline and the proposed method
remains.



Figure 9. Performance comparison between the proposed and baseline method on the CrowdPose testset. All images correspond to complex
pose cases. In particular, as in rows 1, 3, 5, and 6, the baseline method does not properly estimate the complex pose for a sitting person.
However, the proposed method estimates properly even in a sedentary situation, showing robustness for the complex pose.



Figure 10. Performance comparison between the proposed and baseline method for CrowdPose testset. All images correspond to occlusion
and complex pose cases. Specifically, rows 1 and 3 show results for highly crowded scenes. Unlike the baseline method, which shows poor
performance, the proposed method shows considerable performance robust to these harsh conditions. As in rows 2, 4, 6, and 7, even when
more than half of the body part is occluded, the performance tendency between the baseline and the proposed method remains.
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