## **Appendix: Self-Ordering Point Clouds**

Pengwan Yang, Cees G. M. Snoek, Yuki M. Asano University of Amsterdam

p.yang3@uva.nl

## 1. Further details

**Backbone structure.** The backbone is vanilla PointNet without any transformation layers to preserve the positional information. It consists of five multi-layer perceptions (MLP). See Figure A for more details.

**Class split.** To build the zero-shot transfer learning (Table 8 in paper), we remove the overlaping classes between the training data and test data. We report the class splits in Table A.



Figure A: **Structure of the backbone.** The backbone consists of five MLPs. N denotes the number of points and D denotes the feature dimension size.

|          | training data                                                                                                                                                                                                                                                                                                                              | test data       |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ModelNet | airplane, bathtub, bed, bookshelf, sofa, bottle,<br>car, chair, cone,curtain, desk, dresser, keyboard,<br>door, glass box, xbox, lamp, laptop, mantel,<br>monitor, person, night stand, plant, radio, tent,<br>stairs, toilet, tv stand, wardrobe, range hood                                                                              | ModelNet        | bench, bowl, cup, plower pot,<br>guitar, piano, sink, vase, stool, table                                                                                                                                                                                                                                                                                                        |  |  |
| ModelNet | airplane, bathtub, bed, bookshelf, sofa, bottle,<br>car, chair, cone,curtain, desk, dresser, laptop,<br>door, glass box, keyboard, xbox, lamp, mantel,<br>monitor, person, night stand, plant, tv stand,<br>range hood, radio, stairs, tent, toilet, wardrobe,<br>table, bench, bowl, plower pot, guitar, cup,<br>piano, sink, vase, stool | ShapeNet Core55 | rifle, watercraft, loudspeaker, cabinet, display,<br>telephone, bus, faucet, clock, flowerpot, jar, cap<br>bookshelf, knife, train, trash bin, motorbike, bag,<br>pistol, file cabinet, stove, mug, washer, printer,<br>helmet, microwaves, skateboard, tower, camera,<br>basket, can, pillow, mailbox, dishwasher, rocket,<br>birdhouse, earphone, microphone, remote, bicycle |  |  |
| ModelNet | airplane, bathtub, bed, bookshelf, sofa, car, chair,<br>curtain, desk, dresser, laptop, door, glass box,<br>keyboard, xbox, lamp, mantel, monitor, person,<br>night stand, plant, tv stand, range hood, radio,<br>stairs, tent, toilet, wardrobe, table, bench, bowl,<br>plower pot, guitar, cup, piano, sink, vase, stool                 | 3D MNIST        | all classes                                                                                                                                                                                                                                                                                                                                                                     |  |  |

Table A: Class split for transfer learning. We remove the overlapping classes between training data and test data.

|               | part segmentation (mIoU) |      |      |      | object detection (mAP@0.25) |      |      |      |
|---------------|--------------------------|------|------|------|-----------------------------|------|------|------|
| eval. #points | 2048                     | 256  | 128  | 64   | 4096                        | 512  | 256  | 128  |
| FPS           | 83.7                     | 62.5 | 43.8 | 26.0 | 66.7                        | 50.6 | 44.2 | 30.5 |
| Lang et al.   | 83.7                     | 76.3 | 68.8 | 60.1 | 66.7                        | 58.8 | 53.0 | 49.2 |
| This paper    | 83.7                     | 79.8 | 75.4 | 69.1 | 66.7                        | 61.5 | 59.1 | 56.7 |

Table B: Evaluation for part segmentation on ShaperNet Core55 and object detection on S3DIS. For evaluation, Point-Net is used as the part segmentation network and FCAF3D [1] is used as the object detection network. The metric for part segmentation is mIoU(%) and the metric for object detection is mAP@0.25 (%).

|            |      | number of points |      |      |      |      |  |  |  |
|------------|------|------------------|------|------|------|------|--|--|--|
|            | 16   | 32               | 64   | 128  | 256  | 1024 |  |  |  |
| PointNet   | 52.8 | 73.5             | 80.2 | 82.7 | 85.7 | 86.2 |  |  |  |
| PointNet++ | 59.1 | 79.7             | 85.2 | 88.4 | 90.3 | 90.7 |  |  |  |
| DGCNN      | 55.0 | 71.9             | 81.4 | 84.6 | 88.3 | 92.0 |  |  |  |

Table C: **Different base network in evaluation task**. We evaluate on classification for ModelNet40 with different base network. Our self-ordering is effective regardless of the used base network in evaluation, highlighting its general nature.

## 2. Further results

**Evaluation segmentation and object detection.** We further assess the effectiveness of the learned ordering on two additional complex tasks: part segmentation and object detection (Table B). The results demonstrate that self-ordering is capable of tackling complex 3D scene understanding tasks.

**Different base network in evaluation task.** We compare three base networks on ModelNet40 for classification, namely PointNet, PointNet++, and DGCNN [2]. The results in Table C show that we obtain effective orderings across all three base networks. For all networks 80% to 90% of the classification scores are maintained using only 3% of the points per cloud.

Qualitative results. We show more qualitative examples in Figure B.

## References

- [1] Danila Rukhovich, Anna Vorontsova, and Anton Konushin. Fcaf3d: Fully convolutional anchor-free 3d object detection. In *ECCV*, 2022.
- [2] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. *ACM Transactions on Graphics*, 2019.



Figure B: **Qualitative results on reconstruction.** We show qualitative examples of reconstruction recovered from only 32 points to 128 points. At upper part is the supervised baseline and at bottom part is our self-ordering. Our reconstructions are closer to the original shape.