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In this supplementary material, we describe details of the
network architecture and the training process of our meth-
ods. Additionally, we discuss the limitations of our method
and propose potential solutions. A supplementary video is
also provided, which presents further qualitative compar-
isons, ablation studies, and visual results of our approach.

1. Network Architecture
Speech Encoder. The speech encoder consists of an au-
dio feature extractor and a multi-layer transformer encoder.
The audio feature extractor is initialized with pre-trained
wav2vec2.0 [1] weights and generates audio features of
dimension 1024. The structure of the multi-layer trans-
former encoder is adopted from [5], which consists of an
input linear layer, a 3-layer transformer encoder, and an out-
put linear layer. The self-attention and feed-forward layers
have a hidden size of 512, and 4 attention heads are em-
ployed. The input linear layer converts the audio feature
into 512-dimensional hidden embedding, while the output
linear layer preserves the hidden dimension. The resulting
speech encoding has a dimension of 512.
Visual Encoder. The shared visual encoder adopts
Resnet34 [2] as the backbone, followed by an average pool-
ing layer and a single fully connected layer. The resulting
visual encoding has a dimension of 512.
Decoder. We borrow the decoder structure from [4], which
consists of several upsampling blocks with an upsampling
scale of 2. The details are depicted in Table 1.

2. Implementation Details
Data Batch Organization. In training phase, each batch
of data contains speech, real facial images and synthetic fa-
cial images. Specifically, a batch is composed of 20 speech
snippets, 20 real facial images, and 14 synthetic facial im-
ages, where the speech snippets and real facial images are
synchronized. In addition, two neutral expression images
are included, one is a real face and the other is a synthetic
face.
Training details. We resize the facial images to 256x256

Layer Activation Output shape
Dense - 16384
Reshape - 256x8x8
Conv3x3 LeakyReLU 512x8x8
structure LeakyReLU 2048x8x8
PixelShuffle - 512x16x16
Conv3x3 LeakyReLU 2048x16x16
PixelShuffle - 512x32x32
Conv3x3 LeakyReLU 512x32x32
Conv3x3 LeakyReLU 512x32x32
Conv3x3 LeakyReLU 1024x32x32
PixelShuffle - 256x64x64
Conv3x3 LeakyReLU 256x64x64
Conv3x3 LeakyReLU 256x64x64
Conv3x3 LeakyReLU 512x64x64
PixelShuffle - 128x128x128
Conv3x3 LeakyReLU 128x128x128
Conv3x3 LeakyReLU 128x128x128
Conv3x3 LeakyReLU 256x128x128
PixelShuffle - 64x256x256
Conv3x3 LeakyReLU 64x256x256
Conv3x3 LeakyReLU 64x256x256
Conv1x1 - 3x256x256

Table 1. Decoder architecture. Leaky ReLU activations use
a slope of 0.1. Pairs of consecutive convolutions are com-
posed as residual blocks [2].

and convert them to grayscale images. We use the Adam
optimizer [3] with a learning rate of 1e-4. During training,
the parameters of the audio feature extractor are fixed. The
model is trained for 15000 steps. We evaluate our model
using the last checkpoint.

3. Limitations and Solutions

The proposed network consists of only one real face de-
coder and one synthetic face decoder, which cannot achieve
image-to-image translation for multiple identities. For ex-
ample, generating animations for additional CG characters
is infeasible. To overcome this limitation, we can extend
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the network architecture to multiple decoders, with each de-
coder corresponding to a unique identity. It is worth noting
that in order to train this multi-decoder network, images of
multiple identities are required for training.
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