
A. Recent Descriminative SSL Formulations

Notation Description
xi An image sample

A1(x∗),A2(x∗) Two random augmentations
fθ(.) A feature encoder parameterized by θ
fξ(.) An EMA encoder parameterized by ξ
τ A temperature scaling term

pθ(.) An MLP predictor parameterized by θ.
sg stop-gradient operation.

Table 3: Notations for important elements in SSL. Note
that the extracted or projected representations are nor-
malized to a unit sphere unless specified otherwise.

SimCLR[10] optimizes InfoNCE to maximize similar-
ity between positive pairs and minimize similarity between
negative pairs. Positive pairs are two augmented views of
an image sample, x̃2i, x̃2i+1 = A1(xi),A2(xi). Negative
pairs are all other augmented samples in a mini training
batch. For a batch with N image samples, the augmenta-
tion produces 2N augmented samples. A feature encoder
fθ(.) extracts representations of the batch data z̃i = fθ(x̃i).
SimCLR optimizes the following objective:

LSimCLR = E
i
[−log ez̃

⊤
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]

MoCo/MoCo V2 optimzes InfoNCE to maximize sim-
ilarity between positive pairs and minimize similarity be-
tween negative pairs. Positive pairs are two augmented
views of an image sample, x̃2i, x̃2i+1 = A1(xi),A2(xi).
But negative pairs are representations learned via a moving-
averaged network, fξ(.), and stored in a memory bank with
size K, MK . And ξ = mξ + (1 − m)θ, where m is a
momentum coefficient. z̃2i = fθ(x̃2i), ẑ2i+1 = fξ(x̃2i+1),
ẑj = fξ(x̃j) ∈ MK . MoCo optimizes the following objec-
tive:

LMoCo = E
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BYOL aligns the projection of a representation of an
augmented sample with an EMA representation of an-
other augmented sample. The main difference between
BYOL and SimCLR/MoCo is the claim that BYOL only
formulates the objective on positive pairs. x̃2i, x̃2i+1 =
A1(xi),A2(xi). An MLP predictor, pθ(.), further projects
the representation extracted by the feature encoder to an
embedding space and the EMA representation predicts the
projected embedding/representation by alignment. z̃2i =
fθ(x̃2i),ẑ2i+1 = fξ(x̃2i+1). BYOL optimizes the follow-
ing objective:

LBY OL = E
i
∥pθ(z̃2i)− ẑ2i+1∥22

SimSiam aligns the projection of a representation of an
augmented sample with a detached representation of an-
other augmented sample. Unlike BYOL or MoCo, Siam-
Siam omits the EMA encoder that the author deem to
be unnecessary for a stable representation learning. An
MLP predictor, pθ(.), further projects the representation ex-
tracted by the feature encoder to an embedding space and
the detached representation predicts the projected embed-
ding/representation by alignment. z̃2i = fθ(x̃2i),ẑ2i+1 =
fθ(x̃2i+1)

4. SimSiam optimizes the following objective:

LSimSiam = E
i
[− pθ(z̃2i)

∥pθ(z̃2i)∥2
· ẑ2i+1

∥ẑ2i+1∥2
]

Barlow Twins aligns positive representations of two
augmented samples in feature dimensions and reduces re-
dundancy cross different feature dimensions. Different
to all aforementioned SSL methods, the authors suggest
to standard normalize the representation (zero mean and
unit std) instead of unit sphere normalization. How-
ever, as stated in the paper, either normalization scheme
works under Barlow Twin method. ZA = {z̃2i}Ni=1 =
{fθ(x̃2i)}Ni=1,ZB = {z̃2i+1}Ni=1 = {fθ(x̃2i+1)}Ni=1. And
ZA and ZB are normalized over the batch statistics. Barlow
Twins optimizes the following objective:

LBarlowTwins =
∑
a

(1− Caa)2 + λ
∑
a

∑
b ̸=a

Cab2 (13)
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B. Extended Theory and Proofs

In sections 3.1 and 3.2 we introduce our data genera-
tion process and prove that all SSL methods benefit from
the alignment term in their objectives. Here we extend the
theory to include the output entropy(s) of the encoder net-
work(s) and provide analysis on how SSL prevent repre-
sentation collapse by maximizing the output entropy of the
network.

Theorem B.1 With a data generation process described in
3.1, all discriminative SSL objectives have an alignment
loss function between positive pairs from the network and
output entropy loss function(s) of the network(s):

LSSL = ∥f(x)− f(x̃)∥22 −H(f(x, θ)) (14)

4The z is not normalized yet, since in the loss function both projected
and extracted representations are normalized.



For InfoNCE-driven SSL methods, the proof is:

lim
K→∞
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(15)

with the alignment term in (15) equivlent to E(x,x̃)(1 −
∥f(x) − f(x̃)∥22/2) and the uniformity term equivalent to
−H(f(x)) + logCq(z) [1]. Hence complete the proof by:

lim
K→∞

LInfoNCE − logK =

1

τ
E

(x,x̃)
[∥f(x)− f(x̃)∥22/2− 1]−H(f(x)) + logCq(z)

(16)

For both EMA-driven and Siamese with predictor SSLs,
we show that the loss function can be reformulated to three
terms that first two are the alignment between positive pairs
through the online/trainable network, and the alignment be-
tween same data sample from two networks. The third term
can be further approximated via second order Taylor expan-
sion around z.
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Assuming that κ2 is a large number (as set by 1/τ in
SimCLR and MoCo), then the variance terms V[.] ≈ 0.
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Since f(x, θ) and f(x̃, ξ) maps in the same space Rd2 ,
p can be considered as a bijective linear transformation
within Rb2 . In [22] by change of variable: H(Y) =
H(X) + E[log|Jm|] − H(X|Y) if Y = mX, where m
is a projection matrix mapping X → Y and Jm is the
Jacobian of m, δm

δx . This relates the last two terms in
(18) to maximizing the output cross entropy of p′ and f
w.r.t the same sample, and minimizing the output cross en-
tropy of p′ and f w.r.t positive samples. This also hints
on the importance of the predictor in BYOL, since re-
moving the p in p ◦ f , 2log(E(x,x̃)[e

p′(x,θ)⊤p′(x̃,θ)]) and
−2log(E(x,x̃)[e

p′(x,θ)⊤f(x̃,ξ))]) will cancel out and omit the
output entropy maximization objective resulting in the rep-
resentation collapse.

The same analysis applies to Siamese with predictor
SSL. In case the predictor and/or stop-gradient is re-
moved, the output entropy maximization objective will be
no longer available and lead to a trivial solution.

For Barlow Twins, the objective can be regarded as min-
imizing the information loss between two augmented ex-
amples. In Appendix.A in [74], the author formulate such
relation to the Information Bottleneck Principle:

IBθ = I(fθ(x),x)− βI(fθ(x), x̃)

= H(fθ(x)|x) +
1− β

β
H(fθ(x))

(19)

The first term in (19) is linked to the alignment term in
(13) when [74] assumes that f(x) follows a Gaussian dis-
tribution. However, in our representation learning formula-
tion, we assume the conditional distribution of positive pairs
follows a vMF distribution (3). We can further decompose



(19):

IBθ = Lalignment −H(fθ(x)) +
1− β

β
H(fθ(x)) (20)

As suggested in [74], when β < 1 the best solution of (20)
is to set the representation to a constant, i.e. representation
collapse. When β > 1, the last term in (20) is the same as
maximizing the output entropy of the network.

Once we prove that all SSL objectives contain the align-
ment term and output entropy maximization term, we
demonstrate that the cross entropy between p(.|z) in (1)
and qh(.|z) in (3) can be formulated with the Lalignmet −
H(fθ(x)) as illustrated in [76].

E
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= − E
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z
[log(Ẽ

z
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= Lalignment −H(h(z))

(21)

Since H(.) ≤ 0, then the alignment loss will be a lower
bound for Ez∼p(z)[H(p(.|z), qh(.|z))].

Finally, we can use Proposition 1 and Proposition 2 in
[76] to prove 3.2 and 3.3.

C. Causal3DIdent
3DIdent contained 7 object classes: Teapot, Hare,

Dragon, Cow, Armadillo, Horse, Head. For spotlight po-
sition, spotlight hue, and background hue, variable values
are sampled from U(−1, 1). The dependence is imposed by
varying the mean (µ) of a truncated normal distribution with
standard deviation σ = 0.5, truncated to the range [−1, 1].
See Appendix B in [67] for the dependency on µ.

To exclude variable range with extreme values, we ex-
clude edges for uniformly sampled variables (≤ −0.8 and
≥ 0.8), and exclude smaller portion tail for dependent vari-
ables (≤ µ−0.8 if µ > 0,≥ µ+0.8 if µ ≥ 0). To ensure the
training data size is the same after sampling, the included
samples are delicately sampled to match the original data
size. Three illustrative examples are shown in Figure 9.

This section contains the values of hyperparameters for
SSL methods. Note the batch size is set to 128.

To verify that the difference between seen and unseen
distribution does not induce large discrepancy in the perfor-
mance, we evaluate the accuracy on all classes and report
the difference between seen and unseen distributions. See
Table 5 for results. On average, the difference is accuracy is
about 2% to 3%, which is not comparable to the minimum
reduction in accuracy ≈ 20% reported in Figure 4.

We also verify the same deterioration in performance
when only intervening the 5 children nodes in Figure 3. In

Hyperparameters
SimCLR τ = 0.07

MoCo K = 65536,τ = 0.07,α = 0.99
BYOL α = 0.99

SimSiam None
Barlow Twins λ = 0.005

Table 4: Hyperparameters for SSL methods in training
Causal3dIdent.

simclr moco byol simsiam barlow

acc 0.0343 0.0370 0.0190 0.0168 0.0147
0 0.0860 0.0860 0.0392 0.0279 0.0335
1 0.0761 0.0866 0.0476 0.0320 0.0334
2 0.0241 0.0179 0.0178 0.0097 0.0095
3 0.0445 0.0449 0.0164 0.0261 0.0090
4 0.0543 0.0458 0.0300 0.0226 0.0126
5 0.0603 0.0488 0.0262 0.0234 0.0281
6 0.0542 0.0445 0.0420 0.0655 0.0387

Table 5: Accuracy discrepancy between seen and unseen
distributions.

Figure 10, we observe the same deterioration when only 5
variables are sampled to exclude the extreme edge(s).

We also visualize the latent shift between stable and un-
stable examples via T-SNE[64]. We employed prediction
scores and accuracy to quantitatively demonstrate the effec-
tiveness and value of our proposed solutions, ensuring the
soundness of our research and effectively showcasing their
benefits.

D. ImageNet

ObjectNet is a large crowdsourced test set for object
recognition that includes controls for object rotations, view-
points, and backgrounds. Objects are posed by workers in
their own homes in natural settings according to specific in-
structions detailing what object class they should use, how
and where they should pose the object, and where to im-
age the scene from. Every image is annotated with these
properties, allowing us to test how well object detectors
work across these conditions. Each of these properties is
randomly sampled leading to a much more varied dataset.
There are 313 ObjectNet classes with 113 of them overlap-
ping with the ImageNet classes. With each controlled vari-
able, the changes in the variable poses challenges to identify
the objects correctly due to the very unusual shift.

Starting from ImageNet Stylized ImageNet is con-
structed by stripping every single image of its original tex-
ture and replacing it with the style of a randomly selected
painting through AdaIN style transfer. The original objec-



Figure 8: Examples of images in Causal3DIdent. Each image is associated with a 10-dimensional ground-truth latent repre-
sentation. [posobj = (x, y, z), rotobj = (ϕ, θ, ψ), hueobj , posspl, huespl, huebg]

(a) Teapot

(b) Dragon

(c) Horse

Figure 9: Examples of sampling intervened data samples.
Before sampling and After sampling.

tive for Stylized-ImageNet is to help the network to learn
more about shapes, and less about local textures. However,

(a) Deterioration in Accuracy

(b) Deterioration in Score

Figure 10: Deterioration of unstable changing in data vari-
ables on all SSL. Only 5 children nodes are intervened.

we regards this shift in the appearance as a change in the
data variables(s). Since the stylized images appear dras-
tically different to natural images, we assume this shift is
very hard to counter in the representation space due to en-
tangled transformations.

Synthetic Data follows synthetic procedure in [18]
where object is masked on a background at a location with
a rotation angle. Foreground object masks are cropped
from OpenImages [46]. The object classes that overlap
with ObjectNet classes are selected, and each class is se-
lected with 10 object masks at highest area and not trun-
cated by any other objects. The backgrounds are sampled
from pexel.com with the same set of 867 backgrounds used
in [18]. Initially there are three data variables to control
with: background, rotation, location. The object class is
randomly selected at each sythesizing step. At each train-
ing step, the other two variables are randomly fixed while



Figure 11: Stable latents are well clustered. Unstable latents are scattered randomly around stable clusters.

Figure 12: Illustration of ObjectNet controlling data vari-
ables.

Figure 13: Examples of Stylized ImageNet

the target variable is randomly selected across 10 values.
This results in 10 images to compare with each other. For
the special data variable, texture, we change the style of the
selected object masks to different textures in Describable
Textures Dataset [13] based on formulation used in Stylized
ImageNet. With all other three variables randomly fixed,
the object mask with 10 different textures are sampled.

We carry the experiment on Stable Inference Mapping
to 50 epochs and observe the saturation of the improvement

(Figure 14). To further improve the performance, more in-
tegrated interventions should be applied to make F more
robust to shifts in the data variables.



Figure 14: Training longer in Stable Inference Mapping
can improve the performance. But the improvement satu-
rates after around 30 epochs and the improvement becomes
less significant.


