
Supplementary Material
A. Details of Implementation
A.1. Data manipulation and hyperparameters

To apply directional CLIP loss in a patch-based man-
ner [25], we start by randomly cropping the source image.
The patch size can vary, but for texture styles like golden or
green crystal, we mainly use (0.01, 0.05), while for artistic
styles like painting by Gogh or pop art, we use (0.01, 0.3).
The cropped images are then augmented with perspective
function and random affine transformation.

To guide both style and content, we use different weights
for each loss according to the style. Although the values
may differ for each style, the weights for Lglobal and Ldir

usually range from 5000 to 30000. Additionally, Table 6
provides examples of the weights used for LZeCon, LVGG,
and LMSE. However, one can adjust these values to improve
the quality of the final image.

A.2. Patch-wise cross entropy loss for ZeCon guid-
ance

We provide a more detailed explanation of the cross-
entropy loss in equation (9). The loss takes a query patch v,
along with its positive counterpart v+ and N negative coun-
terparts v−

i , where i ∈ [1, . . . , N ], as inputs. The query
patch is taken from the generated image, while the posi-
tive patch is the corresponding patch from the source im-
age. The negative patches are non-corresponding patches
from the source image. The purpose of the cross-entropy
loss is to encourage a patch to share the embedding space
with its corresponding patch from the input, and not with
the other patches. Mathematically, the cross-entropy loss
can be expressed as:
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(13)

where τ is a temperature.

A.3. Training DDIB

To compare with DDIB, we trained a diffusion model
using 13,000 images from the Wikiart dataset, each with di-
mensions of 256 × 256. The model architecture is based
on guided diffusion [10], with 128 base channels and at-
tention at 16 × 16 and 8 × 8 resolutions. We did not use
residual blocks for upsampling and downsampling, and we
fixed the variance as a constant [16]. The model was trained
for 50,000 iterations using a batch size of 8 on an NVIDIA
RTX 3090.

A.4. Details of image manipulation

While patch-based CLIP losses are effective for modu-
lating textures, they are not ideal for image translation tasks

that involve translating entire classes of objects. For these
tasks, guidance must be applied to the entire image rather
than just small patches. Therefore, in Figures 6, 7, and 8,
CLIP losses were calculated for the entire image in both
image translation and manipulation tasks. However, for the
image style transfer task, patch-based CLIP losses were uti-
lized, as they are well-suited to modulating texture styles.

B. Additional experimental results
B.1. Effect of the number of timesteps

Since the diffusion process usually takes lots of time,
two techniques are widely used - respacing and skipping
time steps [5, 24]. The last time step T is respaced into T ′.
Then we forward the diffusion model to time t0 < T ′ and
reverse the diffusion process from xt0 . T ′ and t0 have var-
ious effects on both image quality and time consumption.
As shown in the Figure 15 (a) and (b), image quality with
respect to style transformation enhances as respacing time
step T ′ increases. However, its growth rate decreases and
its difference is imperceptible even though sampling time
still increases. In the mean time, CLIP score increases as t0
increases as illustrated in Figure 15 (c). On the other hand,
the content information is not fully preserved in the time
steps t0 = 15 or 20 as shown in the Figure 15 (a). Thus, we
set (T ′, t0) as (50, 25) for our baseline.

B.2. Diffusion models’ trade-off between style and
content

With respect to style transfer, one of the challenges posed
by unconditional diffusion models is to maintain content of
the given image. When transforming styles of the given
image, its content changes simultaneously. GAN-based
methods explicitly impose content losses, such as a recon-
struction loss. This results in good performance in content
preservation. In contrast, diffusion models have no con-
straint during training phase. They generate high quality
images in correspondence with the training data domain.
The semantic constraints are not considered which finally
results in the degradation in the quality of the generated im-
ages.

Here, we compare four diffusion models - ILVR, DDIM,
DiffusionCLIP, and our proposed method - with respect to
style and content in the Figure 3. ILVR utilizes down-
sampled reference image as condition in each reverse de-
noising steps. The condition helps the generated image
share its content information with the reference image.
However, it cannot have same identity because reverse
DDPM steps without condition should be given sufficiently
in order to generate images in photo style. This accord-
ingly results in a loss of content. DDIM can reconstruct the
source image when the variance of noise σt is set as 0. How-
ever, the style is also preserved with zero variance. When



Figure 12. Additional results on various style prompts.

Figure 13. (a) Results from our baseline method. (b) Results from
our method combined with timestep scheduling strategy.

Figure 14. Comparative study results on style transfer.

we control σt as larger than zero, we can get photo style
images but their content is altered with stochastic noise.

DiffusionCLIP tried to solve the trade-off between content
and style by fine-tuning the score function ϵθ. However,
it requires much more time due to the model training for
each style and data preparation. In addition, the content
cannot be maintained when the source images are from un-
seen domains. In contrast, our proposed loss LZeCon does
not require additional networks or fine-tuning. This leads
to shorter time than DiffusionCLIP. With the help of ZeCon
guidance, we could retain the content of source image from
any domain and translate it into different styles.

B.3. More Comparison with GAN and CNN-based
methods

In addition to the comparative studies on the GAN-based
methods in the Section 4.2, we conducted more compar-
isons with various GAN-based and CNN-based methods in-
cluding both text and image guidance. For text guidance
method, we compared our method with one more method,
LDAST [13]. For image guidance, we included three meth-
ods, SANet [12], AdaIN [18], and WCT2 [39]. As shown
in the Figure 16, we could notice that LDAST and WCT2



Figure 15. The effect of the respaced time T ′ and skipped time t0. (a) demonstrates the images sampled with (T ′,t0). The first row shows
the difference between various T ′ when t0 is its half and the second row shows the difference between various t0 when T ′ = 50. (b) and
(c) illustrates the relationship between sampling time and CLIP score as graphs for the first and second rows of (a), respectively.

Figure 16. Comparative study results.

could preserve the content information better than SANet
and AdaIN. However, all the four methods for comparison
show inferior performance than our method in perspective
of style transformation.

B.4. More Comparison with Diffusion-based meth-
ods

To extend our comparative studies for style trans-
fer, we compared with both Plug-and-Play[38] and



Figure 17. Ablation study results on diffusion processes. From the second column to the right, the combinations of methods (forward,
reverse) are (DDIM, DDPM), (DDPM, DDPM), (DDPM, DDIM), and (DDIM, DDIM).

Figure 18. Ablation study results on augmentation and the number
of patches N . The target prompt is “Golden.”

InstructPix2Pix[3] As can be seen in Figure 14, Instruct-
Pix2Pix struggled with content preservation and Plug-and-
Play fell short in accurately translating into the target style.
Contrarily, our proposed method showed outstanding per-
formance in preserving content and accurately translating
style.

B.5. Different timesteps on content and style loss

We orchestrated content and style loss applications at
different timesteps. Initially, only content losses were im-
posed during the earlier timesteps. Subsequently, style
losses were exclusively applied later in the process. As de-
picted in Figure 13, outcomes using the timestep schedul-
ing strategy excel at preserving detailed content, like eye-
brows and glasses. Nevertheless, the texture transforma-
tion, specifically into wood, is not sufficiently pronounced

in these results.

B.6. DDPM and DDIM for diffusion processes

Although either DDPM or DDIM can be utilized for both
forward and reverse processes, we conducted a comparative
study in order to show their differences in the generated
images. As shown in Figure 17, results from the forward
DDIM show better performance in preserving content than
DDPM. The earring in the second row appears unchanged in
the output images generated by forward DDIM, whereas its
shape is altered in the images produced by forward DDPM.
For reverse process, DDPM tends to transform styles better
compared to DDIM. Accordingly, we chose to use DDIM
as forward and DDPM as reverse process as default.

B.7. Unseen domains

DiffusionCLIP tried to solve the trade-off between con-
tent and style by fine-tuning the diffusion model with iden-
tity loss. Because of the constraints imposed on the fine-
tuned model, the transformed image shows high perfor-
mance in identity preservation. However, the fine-tuned
model ϵ̂θ converts only the photo domain images. When
it comes to unseen domains, such as portraits or paintings,
they should be converted to photo images through ϵθ. Since
it has not been fine-tuned with identity loss, the semantic
information is lost during the reverse sampling process due
to the stochastic property of the diffusion model. Thus, the
final output from images of unseen domains is degraded in
its quality. In contrast, our proposed method can transform
even the unseen domain images with only one step. Since
our method can preserve the identity with content guidance,
the final outputs do not suffer from quality degradation.
Also, our method takes about 38 seconds whereas Diffu-
sionCLIP requires about 400 seconds for model fine-tuning
and sampling. As described in the Figure 3, DiffusionCLIP
requires two steps from portrait to photo to Pixar domains.
In this process, the face identity is destroyed. However, the



Model Style prompt CLIP-global CLIP-directional ZeCon MSE VGG Patch size t0

ImageNET

Golden 5000 5000 100 5000 10 0.05 15
Watercolor art 5000 10000 300 0 100 0.3 25
Stained glasses 15000 15000 200 1000 10 0.05 25

Oil painting of flowers 20000 20000 1500 10000 10 0.05 25
Red bricks 20000 40000 1000 1000 10 0.05 25
Wooden 20000 50000 1000 1000 10 0.05 25
Leather 20000 30000 2000 20000 200 0.3 25

Marbling 20000 30000 2000 20000 200 0.3 25
Autumn 20000 20000 700 10000 100 0.05 25
Snowy 20000 20000 700 0 100 0.05 25

FFHQ

Pop art 10000 20000 50 1000 50 0.3 25
Stone wall 2000 50000 500 5000 10 0.1 25

Tanned face 15000 15000 1000 10000 100 0.3 25
Clay 40000 40000 1000 10000 0 0.05 25

Portrait by Gogh 10000 7000 10 3000 50 0.3 25
A sketch with crayon 10000 20000 500 10000 100 0.3 25

3d render in the style of Pixar 5000 5000 500 10000 100 0.3 25
Golden 7000 7000 200 0 50 0.05 15
Ukiyo-e 8000 20000 1000 5000 100 0.3 25
Marbling 20000 40000 1000 10000 10 0.3 25

Table 6. Examples of hyperparameters for various style prompts. Weights for CLIP-global loss, CLIP-directional loss, ZeCon loss, MSE
loss, and VGG loss are given. For patch-based CLIP guidance, we control the patch size. The maximum size is given in the table with the
minimum of 0.01. t0 is the time step to which the source image is forwarded when T ′ = 50.

Figure 19. Generated images using random seeds. The style
prompts of the first and the second rows are “Leather” and “A
sketch of crayon”, respectively

proposed method could preserve the identity while trans-
forming into the style of Pixar.

B.8. Augmentation of patches

We use patch-based CLIP losses for style guidance.
From the denoised image x̂0,t, N patches are randomly
cropped and augmented with perspective function and ran-
dom affine transformation. In order to check the importance
of augmentation, we conducted ablation study on the aug-
mentation and the number of patches. As shown in the Fig-
ure 18, the images generated without augmentation could
not transform to gold enough. Also, when N < 32, the tree
is not sufficiently converted to align with the target prompt
“Golden”. From these observations, we chose N = 32 with
augmentations and this choice results in further reduction in
inference time to 24 seconds.

B.9. Stochastic property

The random nature of DDPM leads to various modifi-
cations generated from the same style prompt. As shown in
Figure 19, we observed that the same image and text prompt

Figure 20. Failure cases. Texts from target prompts sometimes
appear on the generated images.

pair could generate various images using different random
seeds.

B.10. User study

For quantitative analysis, we conducted a user study. For
comparison with GAN-based methods, 60 images with four
styles have been used in total. The styles involved are
“golden”, “clay”, “3d render in the style of Pixar”, and “pop
art.” We utilized human face images because StyleCLIP and
StyleGAN-NADA are based on face dataset. In addition, we
totally generated 24 images with six styles for comparison
with DiffusionCLIP. We chose three styles (“neon light”,
“green crystal”, and “Ukiyo-e”) for the photo domain and
the other three styles (“3d render in the style of Pixar”, “pop
art”, and “golden”) for unseen domains. We used portraits
and paintings from Wikiart dataset for unseen domain im-
ages. Besides, for ablation study on content losses, we used
15 images for three styles (“golden”, “oil painting of flow-
ers”, “leather”) in total. The number of questions were 14.
21 users participated in the user study. They were randomly
recruited online.



C. Limitations
Although our proposed method has various strengths and

shows great performance, there remain some limitations.
As described in the Appendix A.1, one should find weights
for each loss though their relevant ranges are given in this
paper. Also, it has been observed that in some cases, the
text prompts describing the targeted style are displayed on
the generated images (Figure 20).



Figure 21. Additional results on various style prompts.

Figure 22. Additional results on color style prompts.



Figure 23. Additional results on various style prompts.



Figure 24. Additional results on the comparative studies. (a), (b), (c), and (d) are the results on styles of “golden”, “3d render in the style
of Pixar”, “pop art”, and “clay”, respectively.



Figure 25. Additional results on the comparative studies. Source images in (a) are from photo domain and ones in (b) are from unseen
domains such as portrait or painting.


