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In the supplementary material, we will first show the ex-

tra details about the implementation in Appendix A, and

then illustrate the class-level IoU performance of different

datasets on generalized zero-shot 3D point cloud semantic

segmentation in Appendix B. Finally, more ablation studies

and analyses are showed in Appendix C.

Appendix A. Extra Implementation Details
We follow 3DGenZ [7] to construct our inductive gen-

eralized zero-shot segmentation experiments, the generator

is implemented by Generative Moment Matching Network

(GMMN) [6], which consists of a conditional multi-layer

perceptron and apply maximum mean discrepancy (MMD)

as the loss for training. The semantic embeddedings are

acquired through GloVe [9] + Word2Vec [8], and the em-

beddeding dimension is 600, while the visual feature em-

beddeding dimensions are 64, 128 and 128 respectively ac-

cording to the backbone FKAConv [4] (for ScanNet [5]

dataset), ConvPoint [3] (for S3DIS [1] dataset) and KPConv

[10] (for SemanticKITTI [2] dataset). We also employ the

class-dependent weighting β and calibrated stacking value

ε as [7] to reduce bias toward the seen classes and set β
to 50, ε as 0.6, 0.4 and 0.2 for ScanNet, S3DIS and Se-

manticKITTI datasets respectively. The evaluation metric

Harmonic mean IoU (HmIoU) that we use among seen and

unseen classes can be formulated as:

HmIoU =
2 ∗mIoU(CS) ∗mIoU(CU )

mIoU(CS) + mIoU(CU )
, (1)

where mIoU(CS) and mIoU(CU ) denote the mean Intersec-

tion over Union mIoU performance (%) on seen classes CS

and unseen classes CU , respectively. All experiments in the

paper are implemented on a single NVIDIA 3090 GPU and

in pytorch framework with cuda 11.1.

Appendix B. Class-level Segmentation Results
Tab. 1 ∼ Tab. 3 show the numerical comparison of spe-

cific class-level IoU performance in zero-shot segmentation

between our method and the current state-of-art 3DGenZ

[7] on various 3 datasets. We apply the annotated data of

both seen and unseen classes to train the fully-supervised

segmentation models as the performance upper bound. We

further visualize the confusion matrix in Fig. 1 for further

detailed comparison and analysis:

Comparisons on ScanNet dataset. Tab. 1 provides

the class-level semantic segmentation performance on the

ScanNet dataset. From the table, we can notice that the

performance of our method is significantly higher than that

of 3DGenZ [7] in terms of IoU on all unseen classes and

overall HmIoU. Moreover, our method performs best on the

seen class “shower curtain” and unseen class “sofa” com-

pared to 3DGenZ. Especially for unseen class “sofa”, we

outperform 3DGenZ by 10.5% according to HmIoU. We

can see from the confusion matrix in Fig. 1 (a) that this is

because other unseen classes (i.e.“bookshelf” and “desk”)

for 3DGenZ are more likely to be predicted as “sofa”. Our

method forms a relatively clear boundary among the predic-

tion of unseen classes, which benefits from the semantic-

visual aware modules that we propose. Meanwhile, it

fully demonstrates that our model synthesize more real and

highly generalized features for seen-to-unseen transfer.

Comparisons on S3DIS dataset. Tab. 2 displays the

class-level segmentation quantitative results on the S3DIS

dataset. We can see that our method is superior to 3DGenZ

[7] in most of the seen and unseen classes, so as to acquire

a higher HmIoU. In particular, our model acquires remark-

able performance on seen classes “board”, “bookcase”,

“door” and unseen class “beam”. In addition, it should

be noted that both our method and 3DGenZ obtain poor re-

sults for unseen “column”. The same situation occurs in the

fully-supervised training results. This shows that the visual

characteristics of the seen class “column” are easily con-

fused with other classes (e.g.“wall”, Fig. 1 (b)), resulting in

a low performance.

Comparisons on SemanticKITTI dataset. Tab. 3 shows

the zero-shot segmentation results for each individual class

on the SemanticKITTI dataset, which is more challenging

in outdoor large-scale complex point cloud scenes. Our

method performs relatively best on seen classes “other ve-
hicle”, “trunk” and unseen class “motorcycle”, leading to a

superior HmIoU performance. In contrast, 3DGenZ [7] in-

correctly predicts more seen “other-vehicle”, unseen “mo-
torcycle” as unseen “truck” and seen “trunk” as unseen

“traffic-sign” (see Fig. 1 (c)). Moreover, it is worth noting

that there exists a high degree of feature similarities among

the seen “bicycle”, “motorcyclist”, “person” and unseen

“bicyclist”, “motorcycle”, which is more likely to lead to

the confusion in the predicted results of both our model and

3DGenZ (shown in Fig. 1 (c)).



Table 1. Class-level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art

3DGenZ [7] on the ScanNet dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen data with

annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [8] as word embeddings.

“HmIoU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Full-Sup 58.0 67.5 21.2 75.5 12.0 35.2 13.6 96.5 20.6 10.7 39.9 63.3 34.2 59.5 81.1 4.8 56.9 30.0 57.4 63.4 47.2

3DGenZ 64.9 44.0 16.9 63.2 15.3 33.8 10.4 91.0 10.1 4.3 26.1 0.2 27.5 43.1 71.3 2.8 6.3 3.3 13.1 8.1 12.5

Ours 61.0 46.2 18.6 63.3 14.2 31.1 4.6 90.7 11.2 0.9 27.2 30.9 29.0 46.5 72.4 3.7 11.1 9.9 23.6 12.6 20.2

Table 2. Class-level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art

3DGenZ [7] on the S3DIS dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen data with

annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [8] as word embeddings.

“HmIoU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Full-Sup 53.9 54.4 96.5 75.9 66.0 78.7 96.0 70.3 74.1 63.1 10.2 54.1 72.4 59.6

3DGenZ 19.1 34.1 92.8 56.3 39.2 25.4 91.5 57.3 62.3 13.9 2.4 4.9 8.1 12.9

Ours 33.0 48.3 96.0 57.2 44.3 40.4 91.9 54.2 64.8 22.3 1.2 6.2 9.3 16.7

Table 3. Class-level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art

3DGenZ [7] on the SemanticKITTI dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen

data with annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [8] as word

embeddings. “HmIoU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Full-Sup 42.0 88.6 93.6 65.8 0.0 2.7 41.1 28.9 69.7 63.7 89.4 77.1 70.5 70.7 87.5 74.4 58.6 26.7 41.6 54.5

3DGenZ 0.0 87.3 86.9 61.8 0.0 0.0 0.0 18.6 0.0 0.0 88.8 78.6 73.6 38.2 87.8 28.0 11.5 0.9 2.6 17.1

Ours 0.0 89.1 91.7 61.6 0.0 0.0 26.9 26.7 0.0 0.0 89.5 77.8 73.8 71.3 88.2 26.8 16.4 1.5 6.6 20.1
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Figure 1. Visualization comparison of confusion matrices for generalized zero-shot point cloud segmentation on various datasets: (a)

ScanNet [5], (b) S3DIS [1] and (c) SemanticKITTI [2]. The seen and unseen classes are in the blue and red color map respectively. We

apply the confusion matrix to show the distribution of the model predicted results. The darker the color is, the more points of this class

are predicted to be the class of the column. Therefore, the darker colors on the diagonal represent more correct predictions. Our method

makes a significant improvement over the current state-of-the-art 3DGenZ [7] in both the seen and unseen classes.



Appendix C. More Ablation Studies
Results under vanilla ZSL setting: We show mAcc (%)

and mIoU (%) of unseen classes under vanilla ZSL setting

(rather than GZSL) on 3 datasets in Tab. 4. We reproduce

the 3DGenZ [7] method for comparison. Results show quite

significant gains of mIoU in ZSL setting, i.e., ScanNet (↑
12.2), S3DIS (↑ 7.0) and SemanticKITTI (↑ 7.5).

Table 4. Experimental results of vanilla ZSL on three benchmarks.

Methods
ScanNet [5] S3DIS [1] SemanticKITTI [2]

mAcc mIoU mAcc mIoU mAcc mIoU

3DGenZ [7]* 62.3 40.5 24.7 14.9 53.3 39.9

Ours 74.7 52.7 36.1 21.9 62.1 47.4

Quantify separation in MCL module: We use the trained

generators to synthesize 4 unseen classes features (500 sam-

ples per class) on ScanNet and measure the average Maxi-

mum Mean Discrepancy (MMD) between each two classes.

We get MMD of 0.32 (w/o MCL) vs 1.87 (w/ MCL), sug-

gesting that MCL enhances seperation between classes.
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