Zero-Shot Point Cloud Segmentation by Semantic-Visual Aware Synthesis
— Supplementary Material —

In the supplementary material, we will first show the ex-
tra details about the implementation in Appendix A, and
then illustrate the class-level IoU performance of different
datasets on generalized zero-shot 3D point cloud semantic
segmentation in Appendix B. Finally, more ablation studies
and analyses are showed in Appendix C.

Appendix A. Extra Implementation Details

We follow 3DGenZ [7] to construct our inductive gen-
eralized zero-shot segmentation experiments, the generator
is implemented by Generative Moment Matching Network
(GMMN) [6], which consists of a conditional multi-layer
perceptron and apply maximum mean discrepancy (MMD)
as the loss for training. The semantic embeddedings are
acquired through GloVe [9] + Word2Vec [8], and the em-
beddeding dimension is 600, while the visual feature em-
beddeding dimensions are 64, 128 and 128 respectively ac-
cording to the backbone FKAConv [4] (for ScanNet [5]
dataset), ConvPoint [3] (for S3DIS [1] dataset) and KPConv
[10] (for SemanticKITTT [2] dataset). We also employ the
class-dependent weighting 3 and calibrated stacking value
€ as [7] to reduce bias toward the seen classes and set /3
to 50, € as 0.6, 0.4 and 0.2 for ScanNet, S3DIS and Se-
manticKITTI datasets respectively. The evaluation metric
Harmonic mean IoU (HmloU) that we use among seen and
unseen classes can be formulated as:

2+ mloU(C®) * mIoU(CY)
mloU(C?) + mlIoU(CY) ’

HmloU = 1
where mIoU(C?) and mIoU(CY) denote the mean Intersec-
tion over Union mloU performance (%) on seen classes C s
and unseen classes CY, respectively. All experiments in the
paper are implemented on a single NVIDIA 3090 GPU and
in pytorch framework with cuda 11.1.

Appendix B. Class-level Segmentation Results

Tab. 1 ~ Tab. 3 show the numerical comparison of spe-
cific class-level IoU performance in zero-shot segmentation
between our method and the current state-of-art 3DGenZ
[7] on various 3 datasets. We apply the annotated data of
both seen and unseen classes to train the fully-supervised
segmentation models as the performance upper bound. We
further visualize the confusion matrix in Fig. 1 for further
detailed comparison and analysis:

Comparisons on ScanNet dataset. Tab. 1 provides
the class-level semantic segmentation performance on the
ScanNet dataset. From the table, we can notice that the

performance of our method is significantly higher than that
of 3DGenZ [7] in terms of IoU on all unseen classes and
overall HmloU. Moreover, our method performs best on the
seen class “shower curtain” and unseen class “sofa” com-
pared to 3DGenZ. Especially for unseen class “sofa”, we
outperform 3DGenZ by 10.5% according to HmloU. We
can see from the confusion matrix in Fig. 1 (a) that this is
because other unseen classes (i.e. “bookshelf” and “desk”)
for 3DGenZ are more likely to be predicted as “sofa”. Our
method forms a relatively clear boundary among the predic-
tion of unseen classes, which benefits from the semantic-
visual aware modules that we propose. Meanwhile, it
fully demonstrates that our model synthesize more real and
highly generalized features for seen-to-unseen transfer.

Comparisons on S3DIS dataset. Tab. 2 displays the
class-level segmentation quantitative results on the S3DIS
dataset. We can see that our method is superior to 3DGenZ
[7] in most of the seen and unseen classes, so as to acquire
a higher HmloU. In particular, our model acquires remark-
able performance on seen classes “board”, “bookcase”,
“door” and unseen class “beam”. In addition, it should
be noted that both our method and 3DGenZ obtain poor re-
sults for unseen “column”. The same situation occurs in the
fully-supervised training results. This shows that the visual
characteristics of the seen class “column” are easily con-
fused with other classes (e.g. “wall”, Fig. 1 (b)), resulting in
a low performance.

Comparisons on SemanticKITTI dataset. Tab. 3 shows
the zero-shot segmentation results for each individual class
on the SemanticKITTI dataset, which is more challenging
in outdoor large-scale complex point cloud scenes. Our
method performs relatively best on seen classes “other ve-
hicle”, “trunk” and unseen class “motorcycle”, leading to a
superior HmloU performance. In contrast, 3DGenZ [7] in-
correctly predicts more seen “other-vehicle”, unseen “mo-
torcycle” as unseen “truck” and seen “frunk” as unseen
“traffic-sign” (see Fig. 1 (c)). Moreover, it is worth noting
that there exists a high degree of feature similarities among
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the seen “bicycle”, “motorcyclist”, “person” and unseen
“bicyclist”, “motorcycle”, which is more likely to lead to
the confusion in the predicted results of both our model and

3DGenZ (shown in Fig. 1 (¢)).



Table 1. Class-level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art
3DGenZ [7] on the ScanNet dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen data with
annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [§] as word embeddings.
“HmloU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Table 2. Class-level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art
3DGenZ [7] on the S3DIS dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen data with
annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [§] as word embeddings.
“HmloU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Table 3. Class-

level IoU performance (%) comparison of 3D point cloud generalized zero-shot semantic segmentation with state-of-art

3DGenZ [7] on the SemanticKITTI dataset. “Full-Sup” denotes the fully-supervised training (upper bound) on both seen and unseen
data with annotations. Both 3DGenZ [7] and our method are based on feature synthesis and employ GloVe [9]+Word2Vec [§] as word
embeddings. “HmloU” (%) represents the Harmonic mean IoU among seen and unseen classes. The best numerical results are in bold.
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Figure 1. Visualization comparison of confusion matrices for generalized zero-shot point cloud segmentation on various datasets: (a)
ScanNet [5], (b) S3DIS [1] and (c) SemanticKITTI [2]. The seen and unseen classes are in the blue and red color map respectively. We
apply the confusion matrix to show the distribution of the model predicted results. The darker the color is, the more points of this class
are predicted to be the class of the column. Therefore, the darker colors on the diagonal represent more correct predictions. Our method
makes a significant improvement over the current state-of-the-art 3DGenZ [7] in both the seen and unseen classes.



Appendix C. More Ablation Studies

Results under vanilla ZSL setting: We show mAcc (%)
and mloU (%) of unseen classes under vanilla ZSL setting
(rather than GZSL) on 3 datasets in Tab. 4. We reproduce
the 3DGenZ [7] method for comparison. Results show quite
significant gains of mloU in ZSL setting, i.e., ScanNet (1
12.2), S3DIS (1 7.0) and SemanticKITTI (1 7.5).

Table 4. Experimental results of vanilla ZSL on three benchmarks.

ScanNet [5] | S3DIS[1] | SemanticKITTI [2]
Methods mAcc  mloU | mAcc mloU | mAcc mloU
3DGenZ [7]*  62.3 40.5 24.7 149 53.3 39.9
Ours 74.7 52.7 36.1 21.9 62.1 47.4

Quantify separation in MCL module: We use the trained
generators to synthesize 4 unseen classes features (500 sam-
ples per class) on ScanNet and measure the average Maxi-
mum Mean Discrepancy (MMD) between each two classes.
We get MMD of 0.32 (w/o MCL) vs 1.87 (w/ MCL), sug-
gesting that MCL enhances seperation between classes.
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