
Appendix

A. Implementation Details
A.1. Two-Phase Optimization Strategy

Note that directly optimizing the Lg (E.q.8) will not

make normal patches build strong correlations with most

patches in the whole image. Instead, as both T g and

Sg have learnable parameters, it’s easier to generate triv-

ial solutions [27], where different patches have not learned

position-adaptive T g , and Sg of normal and abnormal

patches also collapse to a similar discrete distribution. Simi-

larly, directly optimizing the Le (E.q.10) also can not make

each normal patch establish a stronger correlation with a

specific external normal pattern, the collapse issue may also

exist. To better optimize the intra- and inter-correlation

branches, we follow the minimax strategy in [20] to pro-

pose a two-phase optimization strategy. Specifically, in the

first phase, we minimize the Div(T g, SG[Sg]) item to make

the target correlations adapt to various image patterns of

different patches. In the second phase, we maximize the

Div(SG[T g],Sg) item to force the intra-correlations to pay

more attention to the non-adjacent patches with the maxi-

mum entropy constraint. Through the two-phase optimiza-

tion strategy, we can gradually distribute the weights in

the intra-correlations to the non-adjacent patches, instead

of all image patches forming similar intra-image patch-to-

patch correlations, which can effectively reduce the risk of

over-fitting. For the inter-correlation branch, the optimiza-

tion goal is to make each normal patch establish a stronger

correlation with a specific external normal pattern, so we

first maximize the Div(T e, SG[Se]) item and then mini-

mize the Div(SG[T e],Se), which is opposite to the opti-

mization process in the intra-correlation branch. When op-

timizing intra- and inter-correlations, we also need to add

the entropy constraint items: maximizing Ent(Sg) for the

intra-correlation branch and minimizing Ent(Se) for the

inter-correlation branch. Thus, combining the reconstruc-

tion loss Ll, the loss functions of two phases are:

L1 =Ll + λ1Div(T g, SG[Sg])− λ1Div(T e, SG[Se])
(13)

L2 =Ll − λ1Div(SG[T g],Sg) + λ1Div(SG[T e],Se)

− λ2Ent(Sg) + λ2Ent(Se)

where Ll is the reconstruction loss defined in E.q.3, SG[·]
means to stop gradient backpropagation, λ1 and λ2 are used

to trade off the loss items. With the two-phase optimization

strategy, each normal patch can establish stronger correla-

tions with most normal patches and a stronger correlation

with a specific external normal pattern, this is much harder

for anomalies to achieve these correlations, thereby benefi-

cial to amplify the normal-abnormal distinguishability. We

Table 5. Computation Cost Analysis of our model and other com-

pared models.

Method FLOPs
Learnable

Parameters

Training Time

(one epoch)

Inference

Speed

DRAEM [64] 198.7G 97.4M 15s 22fps

PatchSVDD [60] 23.6G 15.3M 16s 1.2fps

MKD [41] 24.1G 24.9M 10s 23fps

PatchCore [35] 12.1G / 14s 19fps

CFLOW [15] 30.7G 24.7M 74s 9.5fps

FOD (Ours) 10.9G 16.2M 15s 21.4fps

further conduct ablation experiments on the direct optimiza-

tion of Lg and Le and the two-phase optimization strategy,

the results are shown in Table 10 of App. B.2.

When implementing the two-phase optimization strat-

egy, we can first calculate the backpropagated gradients of

L1 loss and retain the gradient graph, and then calculate the

backpropagated gradients of L2 loss. The backpropagated

gradients calculated in the second phase will be accumu-

lated to the gradients in the first phase, and then we can call

the optimizer to update the model parameters.

A.2. Computation Cost

We provide computation cost analysis of our model and

other compared models. All the values are measured with

one NVIDIA RTX 3090 GPU and AMD EPYC 7453 28-

Core CPU on the MVTecAD dataset, the results are shown

in Table 5. For all models, we input a 256 × 256 image

to calculate the FLOPs and set batch size to 4 to estimate

the training time. Compared with other models, our model

has the same order of magnitude of learnable parameters

(PatchCore [35] has no learnable parameters) and fewer

FLOPs, but our model can achieve better detection results.

B. Additional Results

B.1. Detailed Results

The detailed pixel-level AUROC results of each category

on the MVTecAD dataset are shown in Table 6. The de-

tailed results of each category for anomaly detection and lo-

calization performance on the BTAD and MVTec3D-RGB

datasets are shown in Table 7 and 8.

Table 7 shows the AUROCs of our method and the SOTA

methods for detecting anomalies on the three classes of

BTAD. Our FOD can achieve 96.0% mean detection AU-

ROC, which can outperform the best competitor CFLOW

[15] by a margin of 1.2%.

The results for individual classes of MVTec3D-RGB are

given in Table 8. We are able to outperform all previous

SOTA methods regarding the average of all classes by a

margin of 3.3%. Note that this dataset is more challenging

than the MVTecAD dataset when comparing the best results

Table 6. Detailed pixel-level AUROCs on the MVTecAD dataset.

Category

Pixel-level Anomaly Localization

DRAEM

[64]

PatchSVDD

[60]

MKD

[41]

PatchCore

[35]

CFLOW

[15]

FOD

(Ours)

Carpet 0.955 0.953 0.990 0.991 0.994 0.990

Grid 0.997 0.961 0.986 0.988 0.993 0.989

Leather 0.986 0.978 0.978 0.994 0.997 0.995

Tile 0.992 0.911 0.952 0.948 0.969 0.948

Wood 0.964 0.916 0.953 0.954 0.969 0.954

Bottle 0.991 0.978 0.985 0.989 0.988 0.987

Cable 0.947 0.964 0.972 0.985 0.975 0.986

Capsule 0.943 0.958 0.979 0.992 0.989 0.990

Hazelnut 0.997 0.978 0.982 0.986 0.984 0.989

Metal nut 0.995 0.980 0.972 0.980 0.971 0.985

Pill 0.976 0.963 0.971 0.963 0.976 0.986

Screw 0.976 0.957 0.983 0.994 0.988 0.992

Toothbrush 0.981 0.983 0.986 0.988 0.983 0.987

Transistor 0.909 0.970 0.886 0.968 0.923 0.989

Zipper 0.988 0.961 0.981 0.981 0.986 0.977

Mean 0.973 0.961 0.970 0.980 0.979 0.983

Table 7. Detailed comparison of our method with the SOTA meth-

ods for the image-level anomaly detection and pixel-level anomaly

localization performance on the BTAD dataset.
Image-level Anomaly Detection

Category
DRAEM

[64]

PatchSVDD

[60]

MKD

[41]

PatchCore

[35]

CFLOW

[15]

FOD

(ours)

Product01 0.995 0.984 0.938 0.984 1.000 0.995

Product02 0.774 0.836 0.882 0.818 0.857 0.864

Product03 0.998 0.951 0.985 1.000 0.987 1.000

Mean 0.922 0.924 0.935 0.934 0.948 0.960
Pixel-level Anomaly Localization

Product01 0.927 0.948 0.949 0.973 0.971 0.971

Product02 0.936 0.954 0.963 0.961 0.967 0.957

Product03 0.964 0.990 0.983 0.993 0.996 0.996

Mean 0.942 0.964 0.965 0.976 0.978 0.975

(99.2% for MVTecAD vs. 88.4% AUROC for MVTec3D-

RGB). Nevertheless, we detect defects in 6 out of 10 cate-

gories at an AUROC of more than 90%, while other meth-

ods only achieve moth than 90% AUROC in most four cat-

egories. This demonstrates the robustness of our method.

B.2. Ablation Results

Ablation results in pixel-level AUROC are shown in Ta-

ble 9. The pixel-level AUROC results demonstrate the same

conclusion as in Table 4: the three key designs in our model:

recognition views, entropy constraint, and reference fea-

tures are all effective. These results also verify that our pro-

posed explicit correlation learning approach is effective and

the intra- and inter-image correlations are complementary

factors to the patch-wise representation discrepancies.

Optimization Strategy. Ablation results in optimiza-

tion strategy are shown in Table 10. Directly optimiz-

ing the Lg and Le cannot make the intra-correlations pay

more attention to the non-adjacent areas and will force

the inter-correlations to pay more attention to diverse nor-

mal patterns. Moreover, direct optimization will cause

the optimization problem of RBF kernel [27], thus cannot

strongly amplify the difference between normal and abnor-

mal patches as expected. The two-phase optimization strat-

egy first optimizes the target-correlations to provide bet-

Figure 5. Hyper-parameter sensitivity for loss weights λ1 and λ2.

ter guidance to the intra- and inter-correlations. Thus, the

two-phase optimization strategy obtains more distinguish-

able correlation distributions than direct optimization and

thereby performs better.

Hyper-parameter Sensitivity. We adopt the loss

weights λ1 and λ2 to trade off the reconstruction loss, the

correlation part and the entropy constraint part. The loss

weight hyper-parameters λ1 and λ2 are set to 0.5 and 0.5
by default in the main text through comprehensive abla-

tion experiments. To illustrate the sensitivity of our model,

we further provide the model performance under different

choices of the loss weights. Note that to avoid too many ex-

periments, we only conduct experiments on the MVTecAD

dataset, and fix λ2 to 1 to change λ1 and then fix λ1 to the

best value to change λ2. The ablation results are shown in

Figure 5 and Table 11. It can be found that λ1 and λ2 are

stable and easy to tune in the range of 0.5 to 1. The results

verify that our model is not very sensitive to the loss weight

hyper-parameters, which is essential for applications.

We also show hyper-parameter sensitivity for the number

of heads and layers in Table 12 and 13, respectively. It can

be found that when setting the number of heads to 8 and the

number of layers to 3 can achieve the best result. Thus, we

use 8 and 3 as the default values in the main text.

Feature Levels. Besides, we also explore the impact of

different network layers on model performance and show

the results in Table 14. For single-layer features, 8× one-

layer yields the best result as it trades off both semantic

representation capability and fine-granularity of the fea-

tures. Multi-scale feature fusion helps to improve the detec-

tion performance as it’s conducive to cover more types and

scales of anomalies. Note that using the {4×, 8×, 16×}
three-layer features doesn’t gain significant performance

improvement compared with {8×, 16×} two-layer features,

but it instead increases the computational cost. Therefore,

we use {8×, 16×} two-layer features by default throughout

the main text.

B.3. External Reference Features

External reference features are used for providing accu-

mulated knowledge of normality for the inter-correlation

learning branch. Thus, these features should represent all

possible normal patterns of all normal samples. To this end,

we can employ many methods to generate the external refer-

Table 8. Detailed comparison of our method with the SOTA methods for image-level anomaly detection and pixel-level anomaly localization

performance on the MVTec3D-RGB dataset.

Image-level Anomaly Detection

Method Bagel Cable Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
DRAEM [64] 0.988 0.445 0.819 0.635 0.759 0.862 0.849 0.506 0.986 0.724 0.757

PatchSVDD [60] 0.892 0.831 0.570 0.695 0.722 0.626 0.618 0.653 0.999 0.827 0.743

MKD [41] 0.940 0.616 0.782 0.275 0.656 0.736 0.684 0.703 0.910 0.575 0.688

PatchCore [35] 0.887 0.939 0.903 0.703 0.972 0.809 0.750 0.581 0.959 0.884 0.839

CFLOW [15] 0.973 0.887 0.871 0.789 0.989 0.735 0.810 0.692 0.983 0.786 0.851

FOD (Ours) 0.940 0.952 0.911 0.844 0.987 0.844 0.843 0.662 0.992 0.864 0.884
Pixel-level Anomaly Localization

DRAEM [64] 0.977 0.972 0.985 0.930 0.982 0.959 0.981 0.984 0.984 0.983 0.976

PatchSVDD [60] 0.953 0.923 0.817 0.857 0.870 0.897 0.907 0.792 0.709 0.790 0.852

MKD [41] 0.991 0.974 0.989 0.957 0.977 0.896 0.975 0.977 0.986 0.977 0.970

PatchCore [35] 0.959 0.979 0.982 0.967 0.968 0.988 0.977 0.979 0.987 0.985 0.977
CFLOW [15] 0.984 0.982 0.984 0.974 0.987 0.900 0.982 0.983 0.980 0.981 0.974

FOD (Ours) 0.988 0.992 0.992 0.979 0.995 0.862 0.989 0.987 0.992 0.982 0.976

Table 9. Ablation results in recognition views, entropy constraint,

external reference features and anomaly scoring. Patch-wise,

Intra and Inter mean patch-wise discrepancy, intra- and inter-

correlation, respectively. w/o and w/ mean without and with en-

tropy constraint. Mean and Coreset refer to mean and coreset

features [35] as the external reference features. Rec, Div and

Rec&Div mean the pure reconstruction criterion, pure KL diver-

gence (E.q.6) and the combined criterion (E.q.12).
Recognition

Views

Entropy

Constraint

Reference

Features

Anomaly

Scoring
MVTecAD BTAD MVTec3D-RGB

Patch-wise / / Rec 0.974 0.975 0.964

Intra

w/o / Div 0.717 0.602 0.778

w/ / Div 0.804 0.620 0.863

w/ / Rec&Div 0.972 0.970 0.961

Inter
w/ Mean Rec&Div 0.978 0.976 0.964

w/ Coreset Rec&Div 0.948 0.897 0.928

Intra+Inter w/ Mean Div 0.846 0.831 0.965

Patch-wise+Intra
+Inter (Ours) w/ Mean Rec&Div 0.983 0.975 0.976

Table 10. Ablation results in optimization strategy. Direct and

Two-phase mean direct optimization of Lg and Le and the two-

phase optimization strategy, respectively.
Dataset MVTecAD BTAD MVTec3D-RGB

Strategy Direct Two-phase Direct Two-phase Direct Two-phase

Image-level AUROC 0.986 0.991 0.959 0.960 0.828 0.884

Pixel-level AUROC 0.957 0.982 0.956 0.975 0.952 0.976

Table 11. Hyper-parameter sensitivity for loss weights λ1 and λ2.
λ1 0.1 0.5 1 3 5 10

Image-level AUROC 0.874 0.990 0.986 0.970 0.965 0.955

Pixel-level AUROC 0.949 0.983 0.982 0.978 0.975 0.970

λ2 0.1 0.5 1 3 5 10

Image-level AUROC 0.981 0.990 0.985 0.943 0.947 0.848

Pixel-level AUROC 0.982 0.983 0.982 0.974 0.973 0.935

Table 12. Hyper-parameter sensitivity for the number of heads.
Number of heads 2 4 8

Image-level AUROC 0.987 0.990 0.992

Pixel-level AUROC 0.982 0.983 0.983

ence features, such as mean features, nearest features, sam-

pling key features by coreset subsampling algorithm [35],

generating prototype features by memory module [28], and

learning codebook features through vector quantization [65]

Table 13. Hyper-parameter sensitivity for the number of layers.
Number of layers 2 3 4 5 6

Image-level AUROC 0.986 0.990 0.983 0.979 0.957

Pixel-level AUROC 0.982 0.983 0.978 0.978 0.969

Table 14. Ablation results in feature levels. The experiments are

conducted on the MVTecAD dataset. 4×, 8×, and 16× mean fea-

ture maps with {4×, 8×, 16×} downsampling ratios, respectively.
Feature Level 4× 8× 16× 8×&16× 4×&8×&16×

Image-level AUROC 0.885 0.981 0.975 0.990 0.988

Pixel-level AUROC 0.932 0.981 0.970 0.983 0.983

or sparse coding techniques [55]. However, because the

RBF-kernel in T e is position-sensitive, the reference fea-

tures are better to preserve the positional information. In

the following, we will introduce how to generate reference

features in detail.

Mean Features. Using patch-wise averaged features as

the external reference features is really simple but effective.

Formally, for position (i, j), we first extract the set of patch

features at (i, j), Xij = {xk
ij}, k ∈ [1, N] from the N nor-

mal training images. Then, the reference features at position

(i, j) is computed as xf
ij =

1
N

∑N
k=1 x

k
ij . The final external

reference features are composed of averaged features at all

locations and then flattened into 1D: Xf = Flatten({xf
ij}).

Nearest Features. To represent all possible normal pat-

terns and also preserve the positional information, another

simple way is to retain all normal features and then select

the nearest features as the reference features. Specifically,

we first extract the features of all images from the nor-

mal training set, which are denoted as X = {Xk}Nk=1 ∈
R

N×d×H×W . Then, for each position (i, j), we select its

nearest normal feature in the p× p neighborhood as the ref-

erence feature xf
ij . The p × p neighborhood is defined as

follows:

N p
(i,j) = {(i′, j′)|i′ ∈ [i− �p/2�, i+ �p/2�],

j′ ∈ [j − �p/2�, j + �p/2�]} (14)

The reference feature xf
ij is calculated as follows:

xf
ij = argmin

x∈Xp
(i.j)

||x(i,j) − x||2 (15)

where X p
(i.j) = {xk

(i′,j′)|(i′, j′) ∈ N p
(i,j), k = 1, 2, . . . , N}

is the neighborhood features for position (i, j), x(i,j) is the

input feature at position (i, j).
Coreset Features. Following [35], we can employ a

coreset subsampling algorithm to sample key features as the

reference features. The normal features X = {Xk}Nk=1 are

also first extracted by a pre-trained network. Then, we can

establish a coreset feature pool XC by the coreset subsam-

pling mechanism. Conceptually, coreset feature pool XC

aims to most closely and especially more quickly approxi-

mate the original features X in the feature space. Therefore,

it can effectively preserve the key normal patterns in normal

features. The minimax facility location coreset selection al-

gorithm is utilized, the procedure to generate XC can be

defined as follows:

XC∗ = argmin
XC⊂X

max
x1∈X

min
x2∈XC

||x1 − x2||2 (16)

The exact computation of XC∗ is NP-Hard. We follow [35]

to use the iterative greedy approximation strategy to sam-

ple each coreset feature. The ith coreset feature xc
i in the

coreset feature pool is sampled as follows:

xc
i ← argmax

x∈X−XC

min
xc∈XC

||x− xc||2 (17)

Then the coreset feature pool XC is updated by XC ←
XC ∪ {xc

i}. We can repeat the sampling process (E.q.17)

until the pre-defined coreset size.

Prototype Features. In MemoryAE [28], the authors

propose to use a memory module to generate prototype fea-

tures of normal data for lessening the powerful reconstruc-

tion capability of CNNs to abnormal video frames. The

memory module contains P prototypes recording various

prototypical patterns of normal data. However, the proto-

type features used in our method are slightly different, we

need to learn M prototype features at each location to pre-

serve the position information. We denote prototype fea-

tures at position (i, j) by P(i,j) = {pm(i,j)}Mm=1. We then

perform the memory writing operation to update the proto-

type features.

To update each prototype feature pm(i,j) at position (i, j),
we first need to select all input features declaring that the

pm(i,j) is the nearest one. Thus, we compute the cosine sim-

ilarity between each input feature xk
(i,j) and all prototypes

P(i,j). The matching weights wk,m
(i,j) are as follows:

wk,m
(i,j) =

exp(xk
(i,j)(p

m
(i,j))

T)
∑M

m′=1 exp(x
k
(i,j)(p

m′
(i,j))

T)
(18)

Note that multiple input features can be assigned to a single

prototype in the memory. We denote by Um the set of in-

dices for the corresponding input features for the mth item

in the memory. We update the mth prototype using the input

features indexed by the set Um as follows:

pm(i,j) ← L2(p
m
(i,j) +

∑

k∈Um

ν′,k,m(i,j) xk
(i,j)) (19)

where L2 means the L2 normalization. By using a weighted

average of the input features, we can concentrate more on

the input features close to the prototype. To this end, we can

compute matching weights νk,m(i,j) similar to E.q.18:

νk,m(i,j) =
exp(xk

(i,j)(p
m
(i,j))

T)
∑K

k′=1 exp(x
k′
(i,j)(p

m
(i,j))

T)
(20)

and renormalize it as follows:

ν′,k,m(i,j) =
νk,m(i,j)

maxk′∈Umνk
′,m

(i,j)

(21)

Codebook Features. Besides, we can also employ vec-

tor quantization (VQ) [49] to learn codebook features as the

reference features. Codebook features are highly semantic

as VQ is based on quantizing the input features with fea-

tures from a codebook D ∈ R
Ne×d which has been trained

for optimal decoding of spatial configurations of quantized

features into high-fidelity images. For each input feature

x(i,j) at position (i, j), we can obtain a quantized feature

representation z(i,j) by replacing the feature vector x(i,j)

with its nearest neighbor ek in D:

z(i,j) = ek, where k = argmin
j

||x(i,j) − ej ||2 (22)

After quantizing the input features to the codebook features,

we feed the quantized features to a decoder. The decoder

output feature o(i,j) at position (i, j) aims at reconstruct-

ing the input feature x(i,j). During learning the codebook

features, we maximize the cosine similarity between the de-

coder output o(i,j) and the input x(i,j). Note that the quan-

tization process (E.q.22) is non-differentiable, but we could

approximate the gradient similar to the straight-through es-

timator and directly copy gradients from decoder input z(i,j)

Table 15. Ablation results in external reference features. Mean,

Nearest, Coreset, Prototype, and Codebook Features refer to

mean, nearest, coreset [35], prototype [28], and codebook [65]

features as the external reference features, respectively. ·/· means

image-level and pixel-level AUROCs, respectively.
Reference

Features

Dataset

MVTecAD BTAD MVTec3D-RGB

Mean Features 0.990/0.983 0.960/0.975 0.884/0.976

Nearest Features 0.973/0.969 0.947/0.973 0.842/0.970

Coreset Features [35] 0.925/0.948 0.884/0.897 0.700/0.928

Prototype Features [28] 0.987/0.978 0.958/0.975 0.898/0.982

Codebook Features [65] 0.970/0.970 0.955/0.970 0.797/0.956

to input feature x(i,j) [49]. The learning objective is defined

as:

max
H∑

i=1

W∑

j=1

cos(o(i,j), x(i,j))

− ||sg[x(i,j)]− ek||2 − ||x(i,j) − sg[ek]||2 (23)

With the codebook features, we can use the quantized fea-

ture z(i,j) as the reference feature xf
ij as position (i, j).

Results. Ablation results in external reference features

are shown in Table 15. As we mentioned, the reference fea-

tures are better to preserve the positional information, the

results also show that the methods (e.g., Coreset Features

and Codebook Features) that can’t preserve the position in-

formation performs worse. Prototype features can achieve

comparable performance with mean features, but it’s more

intricate to generate prototype features by memory mod-

ule [28]. The ablation results demonstrate that although

the mean features are simple, they are quite effective and

can achieve better results than these more intricate reference

feature generation methods.

C. Qualitative Results
We present in Figure 6 additional anomaly localiza-

tion results of categories with different anomalies in the

MVTecAD dataset.

Input GroundTruth Output Input GroundTruth Output Input GroundTruth Output

Figure 6. Visualization of anomaly localization maps generated by our method on industrial inspection data. All examples are from the

MVTecAD dataset.

